3D coordination polymers with N-heterocyclic Ga(I) moieties

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The reactions of bimetallic acenaphthene-1,2-diimine complex [(Dpp-bian-GaCr(CO)5]2- [Na(Thf)2]2 (I) (Dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with 4,4ʹ-bipyridine (4,4ʹ-Bipy) and 1,3-bis(4-pyridyl)propane (Bpp) in THF gave 3D coordination polymers [{(Dppbian) GaCr(CO)5}{Na(4,4ʹ-Bipy)3}]n (II) and [(Dpp-bian)GaCr(CO)4Na(Et2O)(Bpp)1,5]n (III), respectively. Compounds II and III were characterized by elemental analysis and NMR and IR spectroscopy. The molecular structure of II was established by X-ray diffraction (CCDC no. 2278024).

全文:

受限制的访问

作者简介

Т. Koptseva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: igorfed@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod

E. Baranov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: igorfed@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod

I. Fedushkin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: igorfed@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod

参考

  1. Hadlington T.J., Driess M., Jones C. // Chem. Soc. Rev. 2018. V. 47. P. 4176.
  2. Chu T., Nikonov G.I. // Chem. Rev. 2018. V. 118. P. 3608.
  3. Zhong M., Sinhababu S., Roesky H.W. // Dalton Trans. 2020. V. 49. P. 1351.
  4. Hardman N.J., Eichler B.E., Power Ph.P. // Chem. Commun. 2000. № 20. P. 1991.
  5. Jin G., Jones C., Junk P.C., Stasch A. et al. // New J. Chem. 2008. V. 32. P. 835.
  6. Overgaard J., Jones C., Dange D., Platts J.A. // Inorg. Chem. 2011. V. 50. P. 8418.
  7. Jones C., Junk P.C., Platts J.A., Stasch A. // J. Am. Chem. Soc. 2006. V. 128. № 7. P. 2206.
  8. Schmidt E.S., Jockisch A., Schmidbaur H. // J. Am. Chem. Soc. 1999. V. 121. № 41. P. 9758.
  9. Schmidt E.S., Schier A., Schmidbaur H. // Dalton Trans. 2001. № 5. P. 505.
  10. Baker R.J., Farley R.D., Jones C. et al. // Dalton Trans. 2002. № 20. P. 3844.
  11. Dange D., Choong S.L., Schenk Ch. et al. // Dalton Trans. 2012. V. 41. P. 9304.
  12. Morris L.J., Rajeshkumar T., Maron L., Okuda J. // Chem. Eur. J. 2022. V. 28. № 56. P. e202201480.
  13. Seifert A., Scheid D., Linti G., Zessin T. // Chem. Eur. J. 2009. V. 15. № 44. P. 12114.
  14. Jones C., Mills D.P., Rose R.P. // J. Organomet. Chem. V. 691. № 13. P. 3060.
  15. Kassymbek A., Britten J. F., Spasyuk D. et al. // Inorg. Chem. 2019. V. 58. № 13. P. 8665.
  16. Kassymbek A., Vyboishchikov S.F., Gabidullin B.M. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 18102.
  17. Baker R.J., Jones C., Platts J.A. // Dalton Trans. 2003. № 19. P. 3673.
  18. Baker R.J., Jones C., Platts J.A. // J. Am. Chem. Soc. 2003. V. 125. № 35. P. 10534.
  19. Aldridge S., Baker R.J., Coombs N.D. et al. // Dalton Trans. 2006. № 27. P. 3313.
  20. Jones C., Mills D.P., Rose R.P. et al. // J. Organomet. Chem. V. 695. № 22. P. 2410.
  21. Fedushkin I.L., Sokolov V.G., Piskunov A.V. et al. // Chem. Commun. 2014. V. 50. P. 10108.
  22. Fedushkin I.L., Sokolov V.G., Makarov V.M. et al. // Russ. Chem. Bull. V. 65. № 6. P. 1495.
  23. Sokolov V.G., Skatova A.A., Piskunov A.V. et al. // Russ. Chem. Bull. V. 69. № 8. P. 1537.
  24. Dodonov V.A., Sokolov V.G., Baranov E.V. et al. // Inorg. Chem. 2022. V. 61. № 38. P. 14962.
  25. Zhang R., Wang Y., Zhao Y. et al. // Dalton Trans. 2021. V. 50. № 39. P. 13634.
  26. Koptseva T.S., Sokolov V.G., Ketkov S.Yu. et al. // Chem. Eur. J. 2021. V. 27. № 18. P. 5745.
  27. Sokolov V.G., Koptseva T.S., Rumyantcev R.V. et al. // Organometallics. 2020. V. 39. № 1. P. 66.
  28. Koptseva T.S., Bazyakina N.L., Baranov E.V., Fedushkin I.L. // Mendeleev Commun. 2023. V. 33. P. 167.
  29. Koptseva T.S., Moskalev M.V., Baranov E.V., Fedushkin I.L. // Organometallics. 2023. V. 42. P. 965.
  30. Koptseva T.S., Bazyakina N.L., Moskalev M.V. et al. // Eur. J. Inorg. Chem. 2021. № 7. P. 675.
  31. Koptseva T.S., Bazyakina N.L., Rumyantcev R.V., Fedushkin I.L. // Mendeleev Commun. 2022. V. 32. P. 780.
  32. Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.42.76а — Software Package, Rigaku OD, 2022.
  33. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  34. Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite; Madison (WI, USA): Bruker AXS, 2003.
  35. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  36. SCALE3 ABSPACK: Empirical Аbsorption Сorrection, CrysAlisPro 1.171.42.76а — Software Package, Rigaku OD, 2022.
  37. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576.
  38. Spek A.L. // Acta Cryst. 2009. V. 65. P. 148.
  39. Macrae C.F., Sovago I., Cottrell S.J. et al. // J. Appl. Cryst. 2020. V. 53. P. 226.
  40. Sikma R.E., Balto K.P., Figueroa J.S., Cohen S.M. // Angew. Chem. Int. Ed. 2022. V. 61. Art e202206353.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1.

下载 (156KB)
3. Scheme 2.

下载 (197KB)
4. Fig. 1. 1H NMR spectrum of compound II (400 MHz, C4D8O, 298 K).

下载 (118KB)
5. Fig. 2. Thermogravimetric analysis II.

下载 (77KB)
6. Fig. 3. Fragments of crystal packing II: along the crystallographic axis b (a); general view (b). Thermal ellipsoids of atoms of the anionic Ga—Cr complexes are shown with 30% probability. Hydrogen atoms, Ar substituents, and solvate molecules of toluene with THF are not shown. The index A denotes symmetrically equivalent atoms.

下载 (548KB)
7. Fig. 4. Superposition of two independent molecules of the ionic complex (Dpp-bian)GaCr(CO)5 in II. Thermal ellipsoids with 30% probability are shown. Hydrogen atoms are not shown. The numbering for the first and second molecules of (Dpp-bian)GaCr(CO)5 (with green and brown bonds), respectively, is given through the symbol “|”.

下载 (182KB)
8. Fig. 5. Visualization of voids in crystal II using the Mercury program [39].

下载 (183KB)
9. Rice. 6. 1H NMR spectrum of compound III (400 MHz, C4D8O, 298 K).

下载 (133KB)
10. Rice. 7. Thermogravimetric analysis III.

下载 (79KB)
11. Fig. 8. Asymmetric part of the 3D structure III (a) and fragments of the crystal packing of III in projection onto the plane b0c (b) and a0c (c). The index A denotes symmetrically equivalent atoms.

下载 (636KB)
12. Fig. 9. Visualization of voids in crystal III using the Mercury program [39].

下载 (271KB)

版权所有 © Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».