SEARCH FOR COMBINATIONS OF MONOCARBOXYLIC ACIDS TO OBTAIN MIXED-ANION COMPLEXES OF CADMIUM AND ZINC

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of obtaining mixed-anion complexes of cadmium and zinc with various combinations of monocarboxylic acid anions was investigated. The combination of pentafluorobenzoate (Pfb), benzoate (Bz) anions, with 1,10-phenanthroline (Phen) within a single compound leads to the formation of crystals of previously reported homoanionic complexes. When using 2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenylacetate (Tfpha) or 3,5-dinitrobenzoate (Dnb) anions instead of pentafluorobenzoate, it was possible to isolate mixed-anion compounds [Cd2(Phen)2(Tfpha)2(Bz)2] (I), [Cd3(Phen)2(Dnb)3(Bz)3][Cd3(Phen)2(Dnb)4.5(Bz)1.5] (II), [Zn3(Phen)2(Dnb)4(Bz)2] · 2(C6H6) (III), [ZnCd2(Phen)2(Dnb)5(Bz)] · 3 (C6H6) · (MeOH) (IV). In the structure of compounds II and IV, according to X-ray diffraction data, in some anion sites the Bz-and Dnb-anions are refined simultaneously with different occupancies. Using the compounds [Cd2(Phen)2-(Dnb)2(Pha)2] (V) and [Zn(H2O)(Phen)(Dnb)(Pha)]·MeCN (VI, Pha – phenylacetate anion) as examples, it is shown that mixed-anion complexes can also be formed when a conformationally flexible phenylacetate anion is combined with a stereochemically more rigid 3,5-dinitrobenzoate anion at zinc and cadmium centers. The synthesized compounds were characterized by X-ray diffraction analysis (CCDC nos. 2443227, 2443228, 2443229, 2443230, 2443231, and 2443232, respectively), IR spectroscopy, and CHN analysis. It has been found that the main contribution to the stabilization of the crystal packings is provided by π···π, C–H···F, N–O···π, and NO2···NO2.

About the authors

M. A Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: shmelevma@yandex.ru
Candidate of Chemical Sciences, Research Fellow Moscow, Russian Federation

A. S Chistyakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru

Candidate of Chemical Sciences, Research Fellow

Moscow, Russian Federation

J. K Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru

Candidate of Chemical Sciences, Senior Researcher

Moscow, Russian Federation

G. A Razgonyayeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru

Research Fellow

Moscow, Russian Federation

A. A Sidorov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru

Doctor of Chemical Sciences, Professor, Leading Researcher

Moscow, Russian Federation

I. L Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: shmelevma@yandex.ru

Academician, Doctor of Chemical Sciences, Professor, Head of Laboratory

Moscow, Russian Federation

References

  1. Xu Y., Wang C., Jiang T. et al. //J. Hazard. Mater. 2022. V. 427. № 128092.
  2. Yang R., Yang D., Wang M. et al. //Adv Sci (Weinh). 2023. V. 10. № 15. Art. e2207331.
  3. Qiu Y., Ma Z., Dai G., Fu X., Ma Z. //Inorg. Chem. 2022. V. 61. № 7. P. 3288.
  4. Mandal S., Bej S., Banerjee P. //J. Mol. Liq. 2023. V. 381. P. 121789.
  5. Wang H., Ren L., Cao Q.-L., Cui G.-H. //J. Mol. Struct. 2024. V. 1309. P. 138150.
  6. Fan C., Zhu B., Zhang X. et al. //Inorg. Chem. 2021. V. 60. № 9. P. 6339.
  7. Yao S.-L., Wu R.-H., Wen P. et al. //J. Mol. Struct. 2024. V. 1297. № 2. P. 136925.
  8. Khan M. S., Kamal S., Zulkiflain M. et al. //J. Mol. Liq. 2024. V. 405. P. 125019.
  9. Rosales-Vázquez L.D., Dorazco-González A., Sánchez-Mendieta V. et al. //Dalton Trans. 2021. V. 50. P. 4470.
  10. Shmelev M.A., Polunin R.A., Gogoleva N.V. et al. //Molecules. 2021. V. 26. № 14. P. 4296.
  11. Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. //Russ. Chem. Bull. 2016. V. 65. P. 1198.
  12. Shmelev M.A., Gogoleva N.V., Dolgushin F.M. et al. //Russ. J. Coord. Chem. 2020. V. 46. P. 493.
  13. Mandal S., Saha R., Saha M. et al. //J. Mol. Struct. 2016. V. 1110, P. 11.
  14. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. //Russ. J. Coord. Chem. 2022. V. 48. P. 539.
  15. Mahmudov K.T., Kopylovich M.N., Guedes da Silva M.F.C., Pombeiro A.J.L. //Coord. Chem. Rev. 2017. V. 345. P. 54.
  16. Jin F., Zhou F.X., Yang X.F. et al. //Polyhedron. 2012. V. 43. №1. P. 1.
  17. Singh J., Kim H., Chi K.W. //Chem. Rec. 2021. V. 21. № 3. P. 574.
  18. Loh C.C.J. //Nat. Rev. Chem. 2021. V. 5. P. 792.
  19. Bolot’ko A.E., Shmelev M.A., Chistyakov A.S. et al. //Dalton Trans. 2025. V. 54. P. 5708.
  20. Shmelev M.A., Levina A.A., Chistyakov A.S. et al. //Mendeleev Commun. 2025. V. 35. № 1. P. 35.
  21. Shmelev M.A., Shatrov T.D., Zvereva O.V. et al. //Russ. J. Coord. Chem. 2024. V. 50. P. 557.
  22. Gogoleva N.V., Shmelev M.A., Chistyakov A. S. et al. //Mendeleev Commun. 2024. V. 34. № 4. P. 484.
  23. Shmelev M.A., Kuznetsova G.N., Gogoleva N.V. et al. //Russ. Chem. Bull. 2021. V. 70. P. 830.
  24. Shmelev M.A., Voronina J.K., Chistyakov A.S. et al. //J. Struct. Chem. 2025. V. 66. № 7. P. 1474.
  25. Bhowal R., Balaraman A.A., Ghosh M. et al. //J. Am. Chem. Soc. 2021. V. 143. P. 1024.
  26. Roy S., Bauza A., Frontera A. et al. //J. Mol. Struct. 2016. V. 440. P. 38.
  27. Sindhuja S., Karnan M., Gayathri R., Kavimani M. //J. Indian Chem. Soc. 2024. V. 101. № 10. P. 101276.
  28. Subhapriya G., Kalyanaraman S., Surumbarkuzhali N.et al. //J. Mol. Struct. 2015. V. 1083. P. 48.
  29. Mooibroek T.J., Gamez P. //CrystEngComm. 2012. V. 14. P. 3902.
  30. Alfuth J., Kazimierczuk K., Połoński T., Olszewska T. //Cryst. Growth. Des. 2023. V. 23. № 9. P. 6830.
  31. Sheldrick G.M. //Acta Crystallogr. C. 2015. V. 71. P. 3.
  32. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. //J. Appl. Cryst. 2009. V. 42. P. 339.
  33. Sheldrick G.M. Cell_Now. Madison (WI, USA): Bruker-AXS Inc., 2004.
  34. Twinabs. Madison (WI, USA): Bruker AXS Inc., 2001.
  35. Casanova D., Llunell M., Alemany P., Alvarez S. et al. //Chem. Eur. J. 2005. V. 11. P. 1479.
  36. Shmelev M.A., Kuznetsova G.N., Dolgushin F.M. et al. //Russ. J. Coord. Chem. 2021. V. 47. P. 127.
  37. Fu X.C., Wang X.Y., Li M.T., Wang C.G. //Acta Crystallogr. E. 2006. V. 62. P. m773.
  38. Gogoleva N.V., Shmelev M.A., Kiskin M.A. et al. //Russ. J. Coord. Chem. 2021. V. 47. P. 261.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).