Terephthalate and N-Oxide Isonicotinate Complexes of the {Mo6I8}4+ Cluster
- Authors: Mikhaylov M.A.1, Sukhikh T.S.1, Sheven D.G.1, Sadykov E.H.1, Sokolov M.N.1,2, Berezin A.S.1, Tagil’tsev K.A.2
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk National Research State University, Novosibirsk, Russia
- Issue: Vol 51, No 9 (2025)
- Pages: 556-565
- Section: Articles
- URL: https://ogarev-online.ru/0132-344X/article/view/309078
- DOI: https://doi.org/10.31857/S0132344X25090025
- EDN: https://elibrary.ru/liftjg
- ID: 309078
Cite item
Abstract
The reaction of (TBA)2[Mo6I8(OAc)6] with terephthalic acid and isonicotinic acid N-oxide afforded new complexes, (TBA)2[Mo6I8(OOC-C6H4-COOH)6] (I) and (TBA)2[Mo6I8(OOC-C5H4NO)6] (II), respectively. The optimized synthesis of complex II involves microwave activation of the reaction mixture at 130°C in a Teflon reactor of the ETHOS UP Milestone microwave setup. According to X-ray diffraction data, the molybdenum atoms in the cluster cores of I and II are monodentately coordinated by carboxylate ligands. The cluster anions of complex I [Mo6I8(OOC-C6H4-COOH)6]2– are combined into a three-dimensional structure, the crystal structure contains solvate molecules. Samples of complexes I and II were characterized by elemental analysis for C, H, N, IR spectroscopy, electrospray mass spectrometry and proton magnetic resonance. For powder samples of I and II, bright phosphorescence with emission maxima at ~680 nm, φ = 15%, τ = 125 μs (I) and φ = 12%, τ = 137 μs (II) (in air at λExc = 440 nm) was revealed.
About the authors
M. A. Mikhaylov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: mikhajlovmaks@yandex.ru
T. S. Sukhikh
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: mikhajlovmaks@yandex.ru
D. G. Sheven
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: mikhajlovmaks@yandex.ru
E. H. Sadykov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: mikhajlovmaks@yandex.ru
M. N. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk National Research State University, Novosibirsk, Russia
Email: mikhajlovmaks@yandex.ru
A. S. Berezin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: mikhajlovmaks@yandex.ru
K. A. Tagil’tsev
Novosibirsk National Research State University, Novosibirsk, Russia
Author for correspondence.
Email: mikhajlovmaks@yandex.ru
References
- Gassan A.D., Ivanov A.A., Pozmogova T.N. et al. // Int. J. Mol. Sci. 2022. V. 23. P. 8734.
- Pozmogova T.N., Sitnikova N.A., Pronina E.V. et al. // Mater. Chem. Front. 2021. V. 5. P. 7499.
- Ivanov A.A., Haouas M., Evtushok D.V., Pozmogova T.N. et al. // Inorg. Chem. 2022. V. 61. P. 14462.
- Neaime C., Amela-Cortes M., Grasset F., Molard Y. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 30166.
- Михайлов М.А., Соколов М.Н. // Изв. АН. Сер. хим. 2024. Т. 73(6), С. 1541.
- Kirakci K., Zelenka J., Rumlová M. et al. // Biomater. Sci. 2019. V. 7. P. 1386.
- Felip-Leon C., del Valle C.A., Perez-Laguna V. et al. // J. Mater Chem. B. 2017. V. 5. P. 6058.
- Vorotnikova N.A., Bardin V.A., Vorotnikov Y.A. et al. // Dalton Trans. 2021. V. 50. P. 8467.
- Vorotnikova N.A., Alekseev A.Y., Vorotnikov Y.A. et al. // Mater. Sci. Engineering. 2019. V. 105. P. 110.
- Ivanova M.N., Vorotnikov Y.A., Plotnikova E.E. et al. // Inorg. Chem. 2020. V. 59. P. 6439.
- Petunin A.A., Evtushok D.V., Vorotnikova N.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 2177.
- Feliz M., Atienzar P., Amela-Cortes M. et al. // Inorg. Chem. 2019. V. 58. P. 15443.
- Beltran A., Mikhailov M., Sokolov M.N. et al. // J. Mater. Chem. B. 2016. V. 4. P. 5975.
- Puche M., Garcia-Aboal R., Mikhaylov M.A. et al. // Nanomaterials. 2020. V. 10. P. 1259.
- Nguyen T.K.N., Grasset F., Cordier S. et al. // Adv. Powder Technol. 2020. V. 31. P. 895.
- Amela-Cortes M., Paofai S., Cordier S. et al. // Chem. Commun. 2015. V. 51. P. 8177.
- Ghosh R.N., Baker G.L., Ruud C., Nocera D.G. et al. // Appl. Phys. Lett. 1999. V. 75. P. 2885.
- Prevot M., Amela-Cortes M., Manna S.K. et al. // Adv. Funct. Mater. 2015. V. 25. P. 4966.
- Molina E.F., Martins de Jesus N.A., Paofai S. et al. // Chem. Eur. J. 2019. V. 25. P. 1.
- Robin M., Dumait N., Amela-Cortes M. et al. // Chem. Eur. J. 2018. V. 24. P. 4825.
- Efremova O.A., Brylev K.A., Vorotnikov Y.A. et al. // J. Mater. Chem. C. 2016. V. 4. P. 497.
- Kirakci K., Sícha V., Holub J. et al. // Inorg. Chem. 2014. V. 53. P. 13012.
- Aubert T., Cabello-Hurtado F., Esnault M.A. et al. // J. Phys. Chem. C. 2013. V. 117. P. 20154.
- Truong T.G., Dierre B., Grasset F. et al. // Sci. Technol. Adv. Mater. 2016. V. 17. P. 443.
- Mikhaylov М.A., Abramov P.A., Komarov V.Y., Sokolov M.N. // Polyhedron 2017. V. 122. P. 241.
- Vorotnikov Y.A., Efremova O.A., Vorotnikova N.A. et al. // RSC Adv. 2016. V. 6. P. 43367.
- Evtushok D.V., Melnikov A.R., Vorotnikova N.A. et al. // Dalton Trans. 2017. V. 46. P. 11738.
- Svezhentseva E.V., Vorotnikov Y.A., Solovieva A.O. et al. // Chem. Eur. J. 2018. V. 24. P. 17915.
- Mikhailov M.A., Brylev K.A., Abramov P.A. et al. // Inorg. Chem. 2016. V. 55. P. 8437.
- Akagi S., Fujii S., Horiguchi T., Kitamura N. // J. Cluster Sci. 2017. V. 28. P. 757.
- Михайлов М.А., Березин А.С., Сухих Т.С. и др. // ЖСХ. 2021. Т. 62. С. 1896.
- Mironova A.D., Mikhaylov M.A., Maksimov A.M. et al. // Eur. J. Inorg. Chem. 2022. V. 2022. P. e202100890(1–11).
- Sokolov M.N., Brylev K.A., Abramov P.A. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. P. 4131.
- Михайлов М.А., Абрамов П.А., Миронова А.Д., и др. // Коорд. химия. 2019. Т. 45. С. 58 (Mikhailov M.A., Abramov P.A., Mironova A.D. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 56). https://doi.org/10.1134/S1070328419010081
- Волостных М.В., Лобода П.А., Синельщикова А.А., и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1192–1201.
- Volostnykh M.V., Mikhaylov M.A., Sinelshchikova A.A. et al. // Dalton Trans. 2019. V. 48. № 5. P. 1835.
- Volostnykh M.V., Kirakosyan G.A., Sinelshchikova A.A. et al. // Dalton Trans. 2023. V. 52. № 16. P. 5354.
- Sheldrick G. // Acta Crystallogr. Sect. A. 2015. V. 71. P. 3. doi: 10.1107/S2053273314026370
- Sheldrick G. // Acta Crystallogr. Sect. C. 2015. V. 71. P. 3–8. doi: 10.1107/S2053229614024218.
- Dolomanov, O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. doi: 10.1107/S0021889808042726.
- Lide D.R. // CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 2009.
- Chongqing Chemdad Co. Ltd. https://www.chemdad.com/
- Bernstein J., Davis R.E., Shimoni L., Chang N.-L. // Angew. Chem. Int. Ed. Engl. 1995. 34. P. 1555.
- Михайлов М.А., Березин А.С., Сухих Т.С. и др. // Журн. структ. химии. 2022. Т. 63. 103869.
- Nosov V.G., Toikka Y.N., Petrova A.S. et al. // Molecules. 2023. V. 28(5). P. 2378.
- Nosov V.G., Kupryakov A.S., Kolesnikov I.E. et al. // Molecules. 2022. V. 27(18). P. 5763.
- Butorlin O.S., Petrova A.S., Toikka Y.N. et al. // Molecules. 2024. 29(15). P. 3558.
- Miao Du, Cheng-Peng Li, Jian-Hua Guo // CrystEngComm. 2009. V. 11. P. 1536.
- Stefan L., Zbigniew G., Guenther M., Maciej K. // J. Chem. Crystallogr. 2010. V. 40. P. 646.
Supplementary files
