Комплексы кальция с объемным трис-(2-N-пиперидинометил)-фенил)метоксидным лигандом. Синтез и каталитическая активность в деароматизации N-гетероциклов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

По реакции эквимольных количеств трис-((2-N-пиперидинометил)-фенил)метанола ((2-C5H10NCH2-o-C6H4)3COH) и [(Me3Si)2N]2Ca(THF)2 (толуол, 23С) с выходом 70% получен смешаннолигандный алкоксид-амидный комплекс кальция [(2-C5H10NCH2C6H4)3CO]CaN(SiMe3)2 (I). Методом РСА установлено, что в I моноанионный алкоксидный лиганд координирован с металлом по κ3-O,N,N-типу. Комплекс I катализирует присоединение PhSiH3 к аннелированным N-содержащим гетероциклам: хинолину, 4-метилхинолину, 6-метилхинолину и изохинолину. Реакции хемо- и региоселективны, протекают за время от 24 до 120 ч. Взаимодействие I с PhSiH3 (мольное соотношение 1 : 2) приводит к образованию бис(алкоксидного) комплекса [κ2-O,N-(2-C5H10NCH2C6H4)3CO]2Ca (II) и CaH2, являющихся результатом симметризации промежуточно образующегося алкоксигидрида кальция. В кристаллическом состоянии комплекс II имеет нелинейную структуру с углом OCa(1)O 112.65(4), при этом только по одному из пиперидидных фрагментов обоих лигандов принимают участие в координации с ионом металла. Молекулярное строение комплексов I и II установлено с помощью РСА (CCDC № 2443979 (I), 2443980 (II)).

Об авторах

А. Н. Селихов

Институт элементоорганических соединений им. А. Н. Несмеянова; Институт металлоорганической химии им. Г. А. Разуваева

Email: trif@iomc.ras.ru
Россия, Москва; Н. Новгород

Ю. В. Нелюбина

Институт элементоорганических соединений им. А. Н. Несмеянова

Email: trif@iomc.ras.ru
Россия, Москва

А. А. Трифонов

Институт элементоорганических соединений им. А. Н. Несмеянова

Автор, ответственный за переписку.
Email: trif@iomc.ras.ru
Россия, Москва

Список литературы

  1. Roche S.P., Porco Jr J.A. // Angew. Chem. Int. Ed. 2011. V. 50. P. 4068.
  2. O’Hagan D. // Nat. Prod. Rep. 2000. V. 17. P. 435.
  3. Eisner U., Kuthan J. // Chem. Rev. 1972. V. 72. P. 1.
  4. Edraki N., Mehdipour A.R., Khoshneviszadeh M. et al. // Drug Discovery Today. 2009. V. 14. P. 1058.
  5. Zheng C., You S.L. // Chem. Soc. Rev. 2012. V.41. P. 2498.
  6. Keay J.G. // Adv. Heterocycl. Chem. 1986, V. 39, P. 1.
  7. Gribble G.W. // Chem. Soc. Rev. 1998. V. 27. P. 395.
  8. Pitts M.R., Harrison J.R., Moody C.J. // Perkin Trans. 2001. V. 1. P. 955.
  9. Bull J.A., Mousseau J.J., Pelletier G. et al. // Chem. Rev. 2012. V. 112. P. 2642.
  10. Stout D.M., Meyers A.I. // Chem. Rev. 1982. V. 82. P. 223.
  11. Wang D.S., Chen Q.An, Lu S.M. et al. // Chem. Rev. 2012. V. 112. P. 2557.
  12. Park S., Chang S. // Angew. Chem. Int. Ed. 2017. V. 56. P. 7720.
  13. Liang Y., Efremenko I., Diskin-Posner Y. et al. // Angew. Chem. Int. Ed. 2024. V. 63. P. e202401702.
  14. Park S. // ChemCatChem. 2024. V. 16. P. e202301422.
  15. Hao L., Harrod J.F., Lebuis A.-M. et al. // Angew. Chem. Int. Ed. 1998. V. 37. P. 3126.
  16. Harrod J.F., Shu R., Woo H.-G., Samuel E. // Can. J. Chem. 2001. V. 79. P. 1075.
  17. Gutsulyak D.V., van der Est A., Nikonov G.I. // Angew. Chem. Int. Ed. 2011. V. 50. P. 1384.
  18. David C., Königs F., Klare H.F.T. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 10076.
  19. Lee S.H., Gutsulyak D.V., Nikonov G.I. // Organometallics. 2013. V. 32. P. 4457.
  20. Jeong J., Park S., Chang S. // Chem. Sci. 2016. V. 7. P. 5362.
  21. Lortie J.L., Dudding T., Gabidullin B.M. et al. // ACS Catal. 2017. V. 7. P. 8454.
  22. Wang X., Zhang Y., Yuan D. et al. // Org. Lett. 2020. V. 22. P. 5695.
  23. Behera D., Thiyagarajan S., Anjalikrishna P.K. et al. // ACS Catal. 2021. V. 11. P. 5885.
  24. Kumar Sahoo R., Sarkar N., Nembenna S. // Inorg. Chem. 2023. V. 62. P. 304.
  25. Greßies S., Süße L., Casselman T. et al. // J. Am. Chem. Soc. 2023. V. 145. P. 11907.
  26. Bories C.C., Gontard G., Barbazanges M. et al. // Org. Lett. 2023. V. 25. P. 843.
  27. Gandhamsetty N., Joung S., Park S.W. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 16780.
  28. Gandhamsetty N., Park S., Chang S. // J. Am. Chem. Soc. 2015. V. 137. P. 15176.
  29. Intemann J., Bauer H., Pahl J. et al. // Chem. Eur. J. 2015. V. 21. P. 11452.
  30. Freitag B., Stegner P., Thum K. et al. // Eur. J. Inorg. Chem. 2018. P. 1938.
  31. Selikhov A.N., Bogachev M.A., Nelyubina Y.V. et al. // Inorg. Chem. Front. 2024. V. 11. P. 4336.
  32. Basalov I.V., Selikhov A.N., Lyubov D.M. et al. // Inorg. Chem. 2014. V. 53. P. 1654.
  33. Selikhov A.N., Shavyrin A.S., Cherkasov A.V. et al. // Organometallics. 2019. V. 38. P. 4615.
  34. Selikhov A.N., Mahrova T.V., Cherkasov A.V. et al. // Chem. Eur. J. 2017. V. 23. P. 1436.
  35. Селихов А.Н., Любов Д.М., Махрова Т.В. и др. // Изв. АН. Сер. хим. 2020. № 6. С. 1085 (Selikhov A.N., Lyubov D.M., Mahrova T.V. et al. // Russ. Chem. Bull. (Int. Ed.). 2020. V. 69. P. 1085).
  36. Ruspic C., Harder S. // Inorg. Chem. 2007. V. 46. P. 10426.
  37. Anker M.D., Kefalidis C.E., Yang Y. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 10036.
  38. Hu H., Cui C. // Organometallics. 2012. V. 31. P. 1208.
  39. Basalov I.V., Liu B., Trifonov A.A. et al. // Organometallics. 2016. V. 35. P. 3261.
  40. Lapshin I.V., Yurova O.S., Trifonov A.A. et al. // Inorg. Chem. 2018. V. 57. P. 2942.
  41. Lapshin I.V., Cherkasov A.V., Trifonov A.A. // Organometallics. 2023. V. 42. P. 2531.
  42. Harder S., Brettar J. // Angew. Chem. Int. Ed. 2006. V. 45. P. 3474.
  43. Spielmann J., Harder S. // Chem. Eur. J. 2007. V. 13. P. 8928.
  44. Jochmann P., Davin J.P., Okuda J. et al. // Angew. Chem. Int. Ed. 2012. V. 51. P. 4452.
  45. Leich V., Spaniol T.P., Maron L. et al. // Angew. Chem. Int. Ed. 2016. V. 55. P. 4794.
  46. Causero A., Ballmann G., Harder S. et al. // Organometallics. 2016. V. 35, P. 3350.
  47. Mukherjee D., Schuhknecht D., Okuda J. // Angew. Chem. Int. Ed. 2018. V. 57. P. 9590.
  48. Shi X., Qin G., Cheng J. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 4356.
  49. Shi X., Hou C., Cheng J. et al. // Chem. Commun. 2020. V. 56. P. 5162.
  50. Taranenko G.R., Selikhov A.N., Nelyubina Yu.V. et al. // Mendeleev Commun. 2022. V. 32. P. 777.
  51. Selikhov A.N., Taranenko G.R., Nelyubina Yu.V. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 96.
  52. Селихов А.Н., Тараненко Г.Р., Нелюбина Ю.В. и др. // Изв. АН. Сер. хим. 2024. № 10. С. 2844 (Selikhov A.N., Taranenko G.R., Nelyubina Yu.V. et al. // Russ. Chem. Bull. Int. Ed. 2024. V. 10. P. 2844).
  53. Selikhov A.N., Nelyubina Yu. V., Aysin R.R. et al. // Dalton Trans. 2025. V. 54. P. 4503.
  54. Westerhausen M. // Inorg. Chem. 1991. V. 30. P. 9610.
  55. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  56. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339.
  57. Maudez W., Meuwly M., Fromm K. M. // Chem. Eur. J. 2007. V. 13. P. 8302.
  58. Roisnel T., Carpentier J.-F., Sarazin Y. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 9069.
  59. Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751.
  60. Selikhov A. N., Cherkasov A.V., Trifonov A.A. et al. // Inorg. Chem. 2019. V. 58. P. 5325.
  61. Westerhausen M., Schwarz W.N. // Z. Anorg. Allg. Chem. 1991. V. 604. P. 12.
  62. Sarazin Y., Carpentier J.F. // Chem. Rec. 2016. V. 16. P. 2482.
  63. Lou Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press, 2007.
  64. Banerjee S., Toutov A.A., Houk K.N. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 6880.
  65. Oestreich M., Toutov A A., Houk K.N. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 6867.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).