The influence of the steric factor on the structure of indium(III) iodide complexes based on substituted o-iminobenzoquinones
- 作者: Meshcheryakova I.N.1, Druzhkov N.O.1, Kocherova T.N.1, Rumyantcev R.V.1, Arsenyev M.V.1, Khamaletdinova N.M.1, Piskunov A.V.1
-
隶属关系:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- 期: 卷 51, 编号 8 (2025)
- 页面: 487-500
- 栏目: Articles
- URL: https://ogarev-online.ru/0132-344X/article/view/306952
- DOI: https://doi.org/10.31857/S0132344X25080011
- EDN: https://elibrary.ru/letvgo
- ID: 306952
如何引用文章
详细
A series of substituted o-iminobenzoquinones (6-((2,6-di-iso-propylphenyl)imino)-2,4-bis(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L1), 4-(tert-butyl)-6-((2,6-di-iso-propylphenyl)imino)-3-methoxycyclohexa-2,4-dien-1-one (L2), and 6-((2,6-di-iso-propylphenyl)imino)-3-methoxy-4-(2,4,4-trimethylpentan-2-yl)cyclohexa-2,4-dien-1-one (L3)) were used to synthesize indium(III) iodide complexes containing the redox-active ligand in its neutral form. The o-iminobenzoquinone L1 was synthesized for the first time. It was found that the structure of the obtained complexes depends on the degree of steric shielding of the carbonyl oxygen atom in the initial o-iminobenzoquinone. The sterically hindered ligand L1 forms a 1:1 adduct with InI3 (complex (L1)InI3 (I)). The absence of a substituent at the 2-position of the o-iminobenzoquinone ring promotes the formation of bis-ligand ionic derivatives {[(L2)2InI2]InI4} (II) and {[(L3)2InI2]InI4} (III). The molecular structures of L1 and the complexes I·0.5toluene, II·toluene·0.5hexane were determined by X-ray diffraction analysis (CCDC deposition numbers: 2440874 (L1), 2440875 (I·0.5toluene), 2440876 (II·toluene·0.5hexane)). The optical and electrochemical properties of the initial o-iminobenzoquinones and their corresponding indium(III) complexes were investigated. It was shown that complexation significantly enhances the oxidative properties of L1, L2, and L3.
作者简介
I. Meshcheryakova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: mina@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod
N. Druzhkov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: mina@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod
T. Kocherova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: mina@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod
R. Rumyantcev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: mina@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod
M. Arsenyev
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: mina@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod
N. Khamaletdinova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: mina@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod
A. Piskunov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: pial@iomc.ras.ru
俄罗斯联邦, Nizhny Novgorod
参考
- Абакумов Г.А., Климов Е.С., Разуваев Г.А. // Изв. АН. Сер. хим. 1971. С. 1827.
- Разуваев Г.А., Абакумов Г.А., Климов Е.С. // Докл. АН СССР. 1971. V. 201. С. 624.
- Абакумов Г.А., Климов Е.С. // Докл. АН СССР. 1972. V. 202. С. 827.
- Абакумов Г.А., Климов Е.С., Ершов В.В., Белостоцкая Е.С. // Изв. АН. Сер. хим. 1975. С. 927.
- Brown M., McGarvey B., Tuck D. // Dalton Trans. 1998. P. 3543. https://doi.org/10.1039/A804124E
- Boucher D., Brown M., McGarvey B., Tuck D. // Dalton Trans. 1999. P. 3445. https://doi.org/10.1039/A901758E
- Abakumov G., Cherkasov V., Piskunov A.V. et al. // Chem. 2009. V. 427. P. 168.
- Mondal M.K., Mukherjee C. // Dalton Trans. 2016. V. 45. P. 13532. https://doi.org/10.1039/C6DT02443B
- Anga S., Paul M., Naktode K. et al. // ZAAC, 2012. V. 638. P. 1311. https://doi.org/10.1002/zaac.201200189
- Speier G., Csihony, J., Whalen A.M., Pierpont C.G. // Inorg. Chim. Acta. 1996. V. 245. P. 1. https://doi.org/10.1016/0020-1693(95)04792-1
- Razborov D.A., Lukoyanov A.N., Makarov V.M. et al. // Russ. Chem. Bull. 2015. V. 64. P. 2377. https://doi.org/10.1007/s11172-015-1166-1
- Ivakhnenko, E.P., Koshchienko, Y.V., Chernyshev A.V. et al. // Russ. J. Gen. Chem. 2016. V. 86. P. 1664. https://doi.org/10.1134/S1070363216070227
- Piskunov A.V., Pashanova K.I., Bogomyakov et al. // Polyhedron. 2020. V. 186. P. 114610. https://doi.org/10.1016/j.poly.2020.114610
- Maity S., Kundu S., Bera S. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. P. 3691. https://doi.org/10.1002/ejic.201600526
- Mitra K.N., Goswami S., and Peng S.M. // Chem. Commun. 1998. P. 1685. https://doi.org/10.1039/A804794D
- Piskunov A.V., Mescheryakova I.N., Bogomyakov A.S. et al. // Inorg. Chem. Commun. 2009. V. 12. P. 1067. https://doi.org/10.1016/j.inoche.2009.08.023
- Coughlin E.J., Qiao Y., Lapsheva et al. // J. Am. Chem. Soc. 2019. V. 141. P. 1016. https://doi.org/10.1021/jacs.8b11302
- Coughlin E.J., Zeller M., Bart S.C. // Angew. Chem., Int. Ed. 2017. V. 56. P. 12142. https://doi.org/10.1002/anie.201705423
- Sinitsa D.K., Sukhikh T.S., Konchenko S.N., Pushkarevsky N.A. // Polyhedron, 2021. V. 195. P. 114967. https://doi.org/10.1016/j.poly.2020.114967
- Lange C.W., Pierpont C.G. // Inorg. Chim. Acta. 1997. V. 263. P. 219. https://doi.org/10.1016/S0020-1693(97)05649-1
- Pierpont C.G., Downs H.H. // Inorg. Chem. 1977. V. 16. P. 2970. https://doi.org/10.1021/ic50177a064
- Bera S., Maity S., Weyhermüller T., Ghosh P. // Dalton Trans. 2016. V. 45. P. 8236. https://doi.org/10.1039/C6DT00091F
- Bera S., Mondal S., Maity S. et al. // Inorg. Chem. 2016. V. 55. P. 4746. https://doi.org/10.1021/acs.inorgchem.6b00040
- Cao L.L., Bamford K.L., Liu L.L., Stephan D.W. // Chem. Eur. J. 2018. V. 24. P. 3980. https://doi.org/10.1002/chem.201800607
- Pointillart F., Klementieva S., Kuropatov V. et al. // Chem. Commun. 2012. V. 48. P. 714. https://doi.org/10.1039/C1CC16314K
- Pointillart F., Kuropatov V., Mitin A. et al. // Eur. J. Inorg. Chem. 2012. V. 2012. P. 4708. https://doi.org/10.1002/ejic.201200121
- Raghavan A., Venugopal A. // J. Coord. Chem. 2014. V. 67. P. 2530. https://doi.org/10.1080/00958972.2014.931576
- Zhang R., Wang Y., Zhao Y. et al. // Dalton Trans. 2021. V. 50. P. 13634. https://doi.org/10.1039/D1DT02120F
- Zwart F.J., Reus B., Laporte A.A.H. et al. // Inorg. Chem. 2021. V. 60. P. 3274. https://doi.org/10.1021/acs.inorgchem.0c03685
- Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. // Inorg. Chem. 2021. V. 60. P. 12309. https://doi.org/10.1021/acs.inorgchem.1c01514
- Ershova I.V., Meshcheryakova I.N., Trofimova O.Y. et al. // Inorg. Chim. Acta, 2022. V. 539. P. 121031. https://doi.org/10.1016/j.ica.2022.121031
- Baker R.J., Farley R.D., Jones C. et al. // Dalton Trans. 2002. P. 3844. https://doi.org/10.1039/B206605J
- Lukoyanov A.N., Fedushkin I.L., Hummert M., Schumann H. // Russ. Chem. Bull. 2006. V. 55. P. 422. https://doi.org/10.1007/s11172-006-0273-4
- Abakumov G.A., Cherkasov. V.K., Piskunov A.V. et al. // Dokl. Chem. 2010. V. 434. P. 237. https://doi.org/10.1134/S0012500810090077
- Kocherova T.N., Martyanov K.A., Rumyantcev R.V. et al. // ChemistrySelect. 2024. V. 9. e202401455. https://doi.org/10.1002/slct.202401455
- Perrin D.D., Armarego W.L.F., Perrin D.R. Purification of Laboratory Chemicals, Oxford (UK): Pergamon, 1980.
- Piskunov A.V., Mescheryakova I.N., Fukin G.K. et al. // New J. Chem. 2010. V. 34. P. 1746. https://doi.org/10.1039/C0NJ00229A
- Абакумов Г.А., Дружков Н.О., Курский Ю.А., Шавырин А.С. // Изв. АН. Сер. хим. 2003. C. 682.
- SAINT. Data Reduction and Correction Program. Madison (WI): Bruker AXS, 2014.
- Rigaku Oxford Diffraction. CrysAlis Pro software system. Wroclaw (Poland): Rigaku Corporation, 2023.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick, G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Guzei I. A., Wendt M. Program Solid-G. UW-Madison (WI, USA), 2004.
- Kocherova T.N., Druzhkov N.O., Arsenyev M.V. et al. // Russ. Chem. Bull. 2023. V. 72. P. 1192. https://doi.org/10.1007/s11172-023-3889-8
- Guzei I.A., Wendt M. // Dalton Trans. 2006. P. 3991. https://doi.org/10.1039/B605102B
- Fukin G.K., Guzei I.A., Baranov E.V. // J. Coord. Chem. 2007. V. 60. P. 937. https://doi.org/10.1080/00958970600987933
- Batsanov S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.
- Addison A.W., Rao T.N., Reedijk J. et al. // Dalton Trans. 1984. P. 1349. https://doi.org/10.1039/DT9840001349
- Okuniewski A., Rosiak D., Chojnacki J., Becker B. // Polyhedron. 2015. V. 90. P. 47. https://doi.org/10.1016/j.poly.2015.01.035
- Rosiak D., Okuniewski A., Chojnacki J. // Polyhedron. 2018. V. 146. P. 35. https://doi.org/10.1016/j.poly.2018.02.016
- Brown S.N. // Inorg. Chem. 2012. V. 51. P. 1251. https://doi.org/10.1021/ic202764j
- Surendra K., Corey E. // J. Am. Chem. Soc. 2014. V. 136. P. 10918. https://doi.org/10.1021/ja506502p
- Prasanna M., Row T.G. // Cryst. Eng. 2000. V. 3. P. 135. https://doi.org/10.1016/S1463-0184(00)00035-6
- Shen Q.J., Pang X., Zhao X.R. et al. // CrystEngComm. 2012. V. 14. P. 5027. https://doi.org/10.1039/C2CE25338K
补充文件
