BCR-ABL Inhibitors in Targeted Therapy of Chronic Myeloid Leukemia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Chronic myeloid leukemia (CML) is a malignant disease of the hematopoietic system with a key pathogenic protein BCR-ABL, which seriously threatens the lives of patients. The first drug based on the inhibition of the hybrid tyrosine kinase BCR-ABL, the gene of which is located on the "Philadelphia chromosome", was imatinib. Imatinib therapy turned out to be quite successful: patients with CML achieved a complete cytogenic response 2 years after the start of treatment and a state of stable remission for a long time. However, the inevitable resistance to imatinib, which occurs in clinical settings due to mutations in the BCR-ABL kinase, gave impetus to the development of new specific drugs, such as dasatinib, nilotinib, bosutinib and ponatinib. Currently, the pharmaceutical market offers the second and third generations of BCR-ABL tyrosine kinase inhibitors designed to combat mutant BCR-ABL and possessing better selectivity. It is noteworthy that the first allosteric inhibitor that can effectively overcome mutations in the ATP binding site has appeared on the market. In recent years, chimeras aimed at proteolysis (PROTAC) based on another E3 ligand have come into use, as a result of which they are able to overcome drug resistance due to selective degradation of target proteins. Data on inhibitors that have received the status of approved drugs for the treatment of CML are presented. Promising areas for the development of new BCR-ABL inhibitors are indicated. The relevance of this area of research is confirmed by the emergence of a significant number of new publications on this topic.

作者简介

S. Kostryukov

National Research Ogarev Mordovia State University

Email: kostryukov_sg@mail.ru
Russia, Saransk

O. Belyakova

National Research Ogarev Mordovia State University

Russia, Saransk

D. Mishkin

National Research Ogarev Mordovia State University

Russia, Saransk

D. Stulnikov

National Research Ogarev Mordovia State University

Russia, Saransk

A. Dektyarev

National Research Ogarev Mordovia State University

Russia, Saransk

参考

  1. Deininger M.W.N., Goldman J.M., Melo J.V. // Blood. 2000. V. 96. P. 3343–3356. https://doi.org/10.1182/blood.V96.10.3343
  2. Greuber E.K., Smith-Pearson P., Wang J., Pendergast A.M. // Nat. Rev. Cancer. 2013. V. 13. P. 559– 571. https://doi.org/10.1038/nrc3563
  3. Kantarjian H., Cortes J. // Abeloff’s clinical oncology (5th Ed.), Churchill Livingstone, 2014. P. 1944–1957. https://doi.org/10.1016/B978-1-4557-2865-7.00101-6
  4. Wong S., Witte O.N. // Annu. Rev. Immunol. 2004. V. 22. P. 247–306. https://doi.org/10.1146/annurev.immunol.22.012703.104753
  5. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность) / Под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. М.: МНИОИ им. П.А. Герцена, филиал ФГБУ “НМИЦ радиологии” МЗ РФ, 2024. 276 с.
  6. Yao J.C., Zhang J.X., Rashid A., Yeung S.C., Szklaruk J., Hess K., Xie K., Ellis L., Abbruzzese J.L., Ajani J.A. // Clin. Cancer Res. 2007. V. 13. P. 234–240. https://doi.org/10.1158/1078-0432.CCR-06-1618
  7. Liu J., Zhang Y., Huang H., Lei X., Tang G., Cao X., Peng J. // Chem. Biol. Drug. Des. 2021. V. 97. P. 649–664. https://doi.org/10.1111/cbdd.13801
  8. Hochhaus A., Kreil S., Corbin A.S., La Rosee P., Muller M.C., Lahaye T., Hanfstein B., Schoch C., Cross N., Berger U., Gschaidmeier H., Druker B.J., Hehlmann R. // Leukemia. 2002. V. 16. P. 2190–2196. https://doi.org/10.1038/sj.leu.2402741
  9. Sun J., Hu R., Han M., Tan Y., Xie M., Gao S., Hu J.F. // Int. J. Biol. Sci. 2024. V. 20. P. 175–181. https://doi.org/10.7150/ijbs.86305
  10. Hantschel O., Wiesner S., Güttler T., Mackereth C.D., Rix L.L.R., Mikes Z., Dehne J., Görlich D., Sattler M., Superti-Furga G. // Mol. Cell. 2005. V. 19. P. 461–473. https://doi.org/10.1016/j.molcel.2005.06.030
  11. Tokarski J.S., Newitt J.A., Chang C.Y., Cheng J.D., Wittekind M., Kiefer S.E., Kish K.F., Lee F.Y.F., Borzillerri R., Lombardo L.J., Xie D., Zhang Y., Klei H. // Cancer Res. 2006. V. 66. P. 5790–5797. https://doi.org/10.1158/0008-5472.CAN-05-4187
  12. Schoepfer J., Jahnke W., Berellini G., Buonamici S., Cotesta S., Cowan-Jacob S.W., Dodd S., Drueckes P., Fabbro D., Gabriel T., Groell J.-M., Grotzfeld R.M., Hassan A.Q., Henry C., Iyer V., Jones D., Lombardo F., Loo A., Manley P.W., Pellé X., Rummel G., Salem B., Warmuth M., Wylie A.A., Zoller T., Marzinzik A.L., Furet P. // J. Med. Chem. 2018. V. 61. P. 8120–8135. https://doi.org/10.1021/acs.jmedchem.8b01040
  13. Qiang W., Antelope O., Zabriskie M.S., Pomicter A.D., Vellore N.A., Szankasi P., Rea D., Cayuela J.M., Kelley T.W., Deininger M.W., O’Hare T. // Leukemia. 2017. V. 31. P. 2844–2847. https://doi.org/10.1038/leu.2017.264
  14. Okuda K., Weisberg E., Gilliland D.G., Griffin J.D. // Blood. 2001. V. 97. P. 2440–2448. https://doi.org/10.1182/blood.v97.8.2440
  15. Cohen M.H., Williams G., Johnson J.R., Duan J., Gobburu J., Rahman A., Benson K., Leighton J., Kim S.K., Wood R., Rothmann M., Chen G., U K.M., Staten A.M., Pazdur R. // Clin. Cancer Res. 2002. V. 8. P. 935–942.
  16. Deininger M.W., Goldman J.M., Lydon N., Melo J.V. // Blood. 1997. V. 90. P. 3691–3698.
  17. Gambacorti-Passerini C., le Coutre P., Mologni L., Fanelli M., Bertazzoli C., Marchesi E., Di Nicola M., Biondi A., Corneo G.M., Belotti D., Pogliani E., Lydon N.B. // Blood Cells Mol. Dis. 1997. V. 23. P. 380–394. https://doi.org/10.1006/bcmd.1997.0155
  18. Nardi V., Azam M., Daley G.Q. // Curr. Opin. Hematol. 2004. V. 11. P. 35–43. https://doi.org/10.1097/00062752-200401000-00006
  19. Cowan-Jacob S.W., Fendrich G., Floersheimer A., Furet P., Liebetanz J., Rummel G., Rheinberger P., Centeleghe M., Fabbro D., Manley P.W. // Acta Crystallogr. D. 2007. V. 63. P. 80–93. https://doi.org/10.1107/S0907444906047287
  20. Schindler T., Bornmann W., Pellicena P., Miller W.T., Clarkson B., Kuriyan J. // Science. 2000. V. 289. P. 1938–1942. https://doi.org/10.1126/science.289.5486.1938
  21. Lombardo L.J., Lee F.Y., Chen P., Norris D., Barrish J.C., Behnia K., Castaneda S., Cornelius L.A.M., Das J., Doweyko A.M., Fairchild C., Hunt J.T., Inigo I., Johnston K., Kamath A., Kan D., Klei H., Marathe P., Pang S.H., Peterson R., Pitt S., Schieven G.L., Schmidt R.J., Tokarski J., Wen M.L., Wityak J., Borzilleri R.M. // J. Med. Chem. 2004. V. 47. P. 6658–6661. https://doi.org/10.1021/jm049486a
  22. Shah N.P., Tran C., Lee F.Y., Chen P., Norris D., Sawyers C.L. // Science. 2004. V. 305. P. 399–401. https://doi.org/10.1126/science.1099480
  23. Kantarjian H.M., Giles F., Gattermann N., Bhalla K., Alimena G., Palandri F., Ossenkoppele G.J., Nicolini F.E., O’Brien S.G., Litzow M., Bhatia R., Cervantes F., Haque A., Shou Y., Resta D.J., Weitzman A., Hochhaus A., le Coutre P. // Blood. 2007. V. 110. P. 3540–3546. https://doi.org/10.1182/blood-2007-03-080689
  24. Weisberg E., Catley L., Wright R.D., Moreno D., Banerji L., Ray A., Manley P.W., Mestan J., Fab-bro D., Jiang J., Hall-Meyers E., Callahan L., Della-Gatta J.L., Kung A.L., Griffin J.D. // Blood. 2007. V. 109. P. 2112–2120. https://doi.org/10.1182/blood-2006-06-026377
  25. Kwarcinski F.E., Brandvold K.R., Phadke S., Beleh O.M., Johnson T.K., Meagher J.L., Seeliger M.A., Stuckey J.A., Soellner M.B. // ACS Chem. Biol. 2016. V. 11. P. 1296–1304. https://doi.org/10.1021/acschembio.5b01018
  26. Weisberg E., Manley P.W., Breitenstein W., Brueggen J., Cowan-Jacob S.W., Ray A., Huntly B., Fabbro D., Fendrich G., Hall-Meyers E., Kung A.L., Mestan J., Daley G.Q., Callahan L., Catley L., Cavaz-za C., Azam M., Neuberg D., Wright R.D., Gilliland D.G., Griffin J.D. // Cancer Cell. 2005. V. 7. P. 129–141.https://doi.org/10.1016/j.ccr.2005.01.007
  27. Boschelli F., Arndt K., Gambacorti-Passerini C. // Eur. J. Cancer. 2010. V. 46. P. 1781–1789.https://doi.org/10.1016/j.ejca.2010.02.032
  28. Levinson N.M., Boxer S.G. // PLoS One. 2012. № 7. P. e29828.https://doi.org/10.1371/journal.pone.0029828
  29. Zabriskie M.S., Vellore N.A., Gantz K.C., Deininger M.W., O’Hare T. // Leukemia. 2015. V. 29. P. 1939–1942.https://doi.org/10.1038/leu.2015.42
  30. Luo H., Quan H., Xie C., Xu Y., Fu L., Lou L. // Leukemia. 2010. V. 24. P. 1807–1809.https://doi.org/10.1038/leu.2010.169
  31. Zhao J., Quan H., Xu Y., Kong X., Jin L., Lou L. // Cancer Sci. 2014. V. 105. P. 117–125.https://doi.org/10.1111/cas.12320
  32. Gong A., Chen X., Deng P., Zhong D. // Drug Metab. Dispos. 2010. V. 38. P. 1328–1340.https://doi.org/10.1124/dmd.110.032326
  33. O’Hare T, Shakespeare W.C., ZhuX.T., Eide C.A., Rivera V.M., Wang F., Adrian L.T., Zhou T.J., Huang W.S., Xu Q.H., Metcalf C.A., Tyner J.W., Loriaux M.M., Corbin A.S., Wardwell S., Ning Y.Y., Keats J.A., Wang Y.H., Sundaramoorthi R., Thomas M., Zhou D., Snodgrass J., Commodore L., Sawyer T.K., Dalgarno D.C., Deininger M.W.N., Druker B.J., Clackson T. // Cancer Cell. 2009. V. 16. P. 401–412.https://doi.org/10.1016/j.ccr.2009.09.028
  34. Gozgit J.M., WongM.J., Moran L., Wardwell S., Mohemmad Q.K., Narasimhan N.I., Shakespeare W.C., Wang F., Clackson T., Rivera V.M. // Mol. Cancer Therapeut. 2012. V. 11. P. 690–699.https://doi.org/10.1158/1535-7163.mct-11-0450
  35. Zhou T., Commodore L., Huang W.-S., Wang Y., Thomas M., Keats J., Xu Q., Rivera V.M., Shakespeare W.C., Clackson T., Dalgarno D.C., Zhu X. // Chem. Bio. Drug. Des. 2010. V. 77. P. 1–11.https://doi.org/10.1111/j.1747-0285.2010.01054.x
  36. Ren X., Pan X., Zhang Z., Wang D., Lu X., Li Y., Wen D., Long H., Luo J., Feng Y., Zhuang X., Zhang F., Liu J., Leng F., Lang X., Bai Y., She M., Tu Z., Pan J., Ding K. // J. Med. Chem. 2013. V. 56. P. 879–894. https://doi.org/10.1021/jm301581y
  37. Zhang Z., Ren X., Lu X., Wang D., Hu X., Zheng Y., Song L., Pang H., Yu R., Ding K. // Cancer Lett. 2016. V. 375. P. 172–178.https://doi.org/10.1016/j.canlet.2016.02.017
  38. Lu X., Zhang Z., Ren X., Wang D., Ding K. // J. Enzyme Inhibition Med. Chem. 2017. V. 32. P. 331–336.https://doi.org/10.1080/14756366.2016.1250757
  39. Weisberg E., Choi H.G., Ray A., Barrett R., Zhang J., Sim T., Zhou W., Seeliger M., Cameron M., Azam M., Fletcher J.A., Debiec-Rychter M., Mayeda M., Moreno D., Kung A.L., Janne P.A., Khosravi-Far R., Melo J.V., Manley P.W., Adamia S., Wu C., Gray N., Griffin J.D. // Blood. 2010. V. 115. P. 4206–4216. https://doi.org/10.1182/blood-2009-11-251751
  40. Choi H.G., Zhang J., Weisberg E., Griffin J.D., Sim T., Gray N.S. // Bioorg. Med. Chem. Lett. 2012. V. 22. P. 5297–5302.https://doi.org/10.1016/j.bmcl.2012.06.036
  41. Wang L., Zhao X.-J., Hua C., Wu H.-X., Bai C.-G., Chen Y. // Future Med. Chem. 2022. V. 14. P. 623–645. https://doi.org/10.4155/fmc-2022-0038
  42. De S.K. // Med. Chem. Res. 2023. V. 32. P. 424–433. https://doi.org/10.1007/s00044-022-03011-9
  43. Adrian F.J., Ding Q., Sim T., Velentza A., Sloan C., Liu Y., Zhang G., Hur W., Ding S., Manley P., Mestan J., Fabbro D., Gray N.S. // Nat. Chem. Biol. 2006. V. 2. P. 95–102.https://doi.org/10.1038/nchembio760
  44. Zhang J., Adrián F.J., Jahnke W., Cowan-Jacob S.W., Li A.G., Iacob R.E., Sim T., Powers J., Dierks C., Sun F., Guo G.R., Ding Q., Okram B., Choi Y., Wojciechowski A., Deng X., Liu G., Fendrich G., Strauss A., Vajpai N., Grzesiek S., Tuntland T., Liu Y., Bursulaya B., Azam M., Manley P. W, Engen J.R., Daley G.Q., Warmuth M., Gray N.S. // Nature. 2010. V. 463. P. 501–506.https://doi.org/10.1038/nature08675
  45. Wylie A.A., Schoepfer J., Jahnke W., Cowan-Jacob S.W., Loo A., Furet P., Marzinzik A.L., Pelle X., Donovan J., Zhu W., Buonamici S., Hassan A.Q., Lombardo F, Iyer V., Palmer M., Berel-lini G., Dodd S., Thohan S., Bitter H., Branford S., Ross D.M., Hughes T.P., Petruzzelli L., Vanasse K.G., Warmuth M., Hofmann F., Keen N.J., Sellers W.R. // Nature. 2017. V. 543. P. 733–737.
  46. https://doi.org/10.1038/nature21702
  47. Deeks E.D. // Drugs. 2022. V. 82. P. 219–226. https://doi.org/10.1007/s40265-021-01662-3
  48. Manley P.W., Barys L., Cowan-Jacob S.W. // Leuk. Res. 2020. V. 98. P. 106458. https://doi.org/10.1016/j.leukres.2020.106458
  49. Hughes T.P., Mauro M.J., Cortes J.E., Minami H., Rea D., DeAngelo D.J., Breccia M., Goh Y.T., Talpaz M., Hochhaus A., le Coutre P., Ottmann O., Heinrich M.C., Steegmann J.L., Deininger M.W.N., Janssen J., Mahon F.X., Minami Y., Yeung D., Ross D.M., Tallman M.S., Park J.H., Druker B.J., Hynds D., Duan Y., Meille C., Hourcade-Potel-leret F., Vanasse K.G., Lang F., Kim D.W. // N. Engl. J. Med. 2019. V. 381. P. 2315–2326.https://doi.org/10.1056/NEJMoa1902328
  50. Zhang Y., Lu P., Li J., Yang J., Qin H., Ye J., Zhu L., Wang J., Shi W., Wang X. // Int. Appl. WO2021143927A1, 2021.
  51. Deng X., Okram B., Ding Q., Zhang J., Choi Y., Adrián F.J., Wojciechowski A., Zhang G., Che J., Bursulaya B. // J. Med. Chem. 2010. V. 53. P. 6934–6946.https://doi.org/10.1021/jm100555f
  52. Eide C.A., Zabriskie M.S., Stevens S.L., Antelope O., Vellore N.A., Than H., Schultz P., Clair A.R., Bowler A.D., Pomicter A.D., Yan D., Senina A.V., Qiang W.,Kelley T.W., Szankasi P., Heinrich M.C., Tyner J.W., Rea D., Cayuela J.M., Kim D.W., Tognon C.E., O’Hare T., Druker B.J., Deininger M.W. // Cancer Cell. 2019. V. 36. P. 431–443.https://doi.org/10.1016/j.ccell.2019.08.004
  53. Eide C.A., Brewer D., Xie T., Schultz A.R., Savage S.L., Muratcioglu S., Merz N., Press R.D., O’Hare T., Jacob T., Vu T.Q., Tognon C.E., Macey T.A., Kuriyan J., Kalodimos C.G., Druker B.J. // Cancer Cell. 2024. V. 49. P. 1486–1488.https://doi.org/10.1016/j.ccell.2024.08.004
  54. Teng M., Luskin M.R., Cowan-Jacob S.W., Ding Q., Fabbro D., Gray N.S. // J. Med. Chem. 2022. V. 65. P. 7581–7594.https://doi.org/10.1021/acs.jmedchem.2c00373
  55. Zou Y., Ma D., Wang Y. // Cell. Biochem. Funct. 2019. V. 37. P. 21–30.https://doi.org/10.1002/cbf.3369
  56. Lai A.C., Toure M., Hellerschmied D., Salami J., Jaime-Figueroa S., Ko E., Hines J., Crews C.M. // Angew. Chem. Int. Ed. Engl. 2016. V. 55. P. 807– 810.https://doi.org/10.1002/anie.201507634
  57. Eide C.A., Adrian L.T., Tyner J.W., Mac Partlin M., Anderson D.J., Wise S.C. // Cancer Res. 2011. V. 71. P. 3189–3195.https://doi.org/10.1158/0008-5472.CAN-10-3224
  58. Liu H., Ding X., Liu L., Mi Q., Zhao Q., Shao Y., Ren C., Chen J., Kong Y., Qiu X., Elvassore N., Yang X., Yin Q., Jiang B. // Eur. J. Med. Chem. 2021. V. 223. P. 113645.https://doi.org/10.1016/j.ejmech.2021.113645
  59. Shimokawa K., Shibata N., Sameshima T., Miyamoto N., Ujikawa O., Nara H., Ohoka N., Hattori T., Cho N., Naito M. // ACS Med. Chem. Lett. 2017. V. 8. P. 1042–1047.https://doi.org/10.1021/acsmedchemlett.7b00247
  60. Burslem G.M., Schultz A.R., Bondeson D.P., Eide C.A., Stevens S.L., Druker B.J., Crews C.M. // Cancer Res. 2019. V. 79. P. 4744–4753.https://doi.org/10.1158/0008-5472.CAN-19-1236
  61. Burslem G.M., Bondeson D.P., Crews C.M. // Chem. Commun. 2020. V. 56. P. 6890–6892.https://doi.org/10.1039/d0cc02201b
  62. Yang Y., Gao H., Sun X., Sun Y., Qiu Y., Weng Q., Rao Y. // J. Med. Chem. 2020. V. 63. P. 8567–8583.
  63. https://doi.org/10.1021/acs.jmedchem.0c00967
  64. Liu H., Mi Q., Ding X., Lin C., Liu L., Ren C., Shen S., Shao Y., Chen J., Zhou Y., Ji L., Zhang H., Bai F., Yang X., Yin Q., Jiang B. // Eur. J. Med. Chem. 2022. V. 244. P. 114810.https://doi.org/10.1016/j.ejmech.2022.114810
  65. Jiang L., Wang Y., Li Q., Tu Z., Zhu S., Tu S., Zhang Z., Ding K., Lu X. // Acta Pharm. Sin. B. 2021. V. 11. P. 1315–1328.https://doi.org/10.1016/j.apsb.2020.11.009
  66. Cruz-Rodriguez N., Tang H., Bateman B., Tang W., Deininger M. // Leukemia. 2024. V. 38. P. 1885–1893. https://doi.org/10.1038/s41375-024-02365-w

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».