Assessment of Adaptive Immune Response Against Influenza Using Synthetic Peptides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study tested a method for assessing the immunogenicity of synthetic peptides, which could form the basis for a clinical diagnostic method for the cellular immune response to influenza A virus. The two peptides used are identical in amino acid composition to the 9-mer epitopes of influenza virus surface proteins relevant to the vaccine strains of the Northern Hemisphere for the 2023–2024 season and represent a fragment (432–440 aa) of influenza A virus hemagglutinin (Phe-Leu-Asp-Ile-Trp-Thr-Tyr-Asn-Ala) and a fragment (454–462 aa) of influenza B virus neuraminidase (Leu-Leu-Trp-Asp-Thr-Val-Thr-Gly-Val). The peptides were synthesized using classical methods of peptide chemistry, with activated esters and the carbodiimide method as the main condensation methods. Fifty-five volunteers aged 20–26 years participated in the clinical study. Gamma interferon (IFN-γ) levels were assessed by enzyme-linked immunosorbent assay. No statistically significant results were obtained for all pairwise comparisons of IFN-γ concentrations in 55 cases. This method needs to be optimized for clinical diagnosis of the cellular immune response to influenza A virus.

About the authors

O. V Gribovskaya

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: olymelnik@yandex.ru
Minsk, Belarus

A. M Tsygankov

Vitebsk State medical University

Vitebsk, Belarus

V. P Martinovich

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Minsk

V. V Yanchenko

Vitebsk State medical University

Vitebsk, Belarus

References

  1. Influenza (Seasonal). World Health Organization. https://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal)
  2. Hagiwara Y., Harada K., Nealon J., Okumura Y., Kimura T., Chaves S.S. // PLoS One. 2022. V. 17. P. e0272795–e0272813. https://doi.org/10.1371/journal.pone.0272795
  3. Murchu E., Comber L., Jordan K., Hawkshaw S., Marshall L., O'Neill M., Ryan M., Teljeur C., Carnahan A., Pérez J.J., Robertson A.H., Johansen K., Jonge J., Krause T., Nicolay N., Nohynek H., Pavlopoulou I., Pebody R., Pentinen P., Soler-Soneira M., Wichmann O., Harrington P. // Rev. Med. Virol. 2023. V. 33. P. e2331. https://doi.org/10.1002/rmv.2330
  4. Peteranderl C., Herold S., Schmoldt C. // Crit. Care Med. 2016. V. 37. P. 487–500. https://doi.org/10.1055/s-0036-1584801
  5. Krammer F., Smith G.J., Fouchier R.A., Peiris M., Kedzierska K., Doherty P.C., Palese P., Shaw M.L., Treanor J., Webster R.G. // Nat. Rev. Dis. Primers. 2018. V. 4. P. 1–21. https://doi.org/10.1038/s41572-018-0002-y
  6. Найхин А.Н., Лосев И.В. // Вопросы вирусологии. 2015. Т. 60. С. 11–16.
  7. Kim S.-H., Españo E., Padasas B.T., Son J.-H., Oh J., Webby R.J., Lee Y.-R., Park C.-S., KimInfluenza J.-K. // Immune Netw. 2024. V. 24. P. e19. https://doi.org/10.4110/m.2024.24.e19
  8. Coughlan L., Lambe T. // Vaccines (Basel). 2015. V. 3. P. 293–319. https://doi.org/10.3390/vaccines3020293
  9. Луцкий А.А., Жирков А.А., Лобзин Д.Ю., Рао М., Алексеева Л.А., Мейрер М., Лобзин Ю.В. // Журнал инфектологии. 2015. Т. 7. С. 10–22.
  10. Krit N.A., Filatova M.P., Kovalchuk O.V., Beschastnaya N.V. // Bioorg. Khim. 1981. V. 7. P. 965–970.
  11. Цыганков А.М., Грибовская О.В., Мартинович В.П., Голубович В.П., Хайрулина Н.В., Янченко В.В. // Известия Национальной академии наук Беларуси. Серия медицинских наук. 2024. Т. 21. С. 53–61. https://doi.org/10.29235/1814-6023-2024-21-1-53-61

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).