A Phenol-Free Method for the Robust Isolation of the Double-Stranded RNA Produced in the E. coli HT115 Strain

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Obtaining a fraction of double-stranded RNA is an integral part of any RNA interference research whether it aimed at solving fundamental or applied problems. The production of dsRNA in bacterial culture is a common technique due to its comparative cheapness and scaling-up opportunities. In this article, we propose a new method for fast and effective isolation of dsRNA from bacterial culture, as an alternative to classical phenol-chloroform extraction. In our method, phenol is replaced with less toxic methanol, and the total RNA thus isolated from bacteria contains up to 25% of the target molecule lacking the DNA contamination, which enables its usage in certain further applications without additional cleanup steps. The application of this methodology will be justified in laboratories engaged in either fundamental or applied research on RNA interference. However, scaling the technology for agricultural use may require adjustments to the protocol described in this work.

About the authors

A. A Ivanov

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University

Email: a.ivanov2@g.nsu.ru
Russia, Novosibirsk; Russia, Novosibirsk

T. S Golubeva

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Immanuel Kant Baltic Federal University

Russia, Novosibirsk, Russia, Kaliningrad

References

  1. Castel S.E., Martienssen R.A. // Nat. Rev. Genet. 2013. V. 14. P. 100–112. https://doi.org/10.1038/nrg3355
  2. Svoboda P. // Front. Plant Sci. 2020. V. 11. P. 1237. https://doi.org/10.3389/fpls.2020.01237
  3. Li H., Guan R., Guo H., Miao X. // Plant Cell Environ. 2015. V. 38. P. 2277–2285. https://doi.org/10.1111/pce.12546
  4. Islam M.T., Davis Z., Chen L., Englander J., Zomorodi S., Frank J., Bartlett K., Somers E., Carballo S.M., Kester M., Shaked A., Pourtaheri P., Sherif M.S. // Microb. Biotechnol. 2021. V. 14. P. 1847–1856. https://doi.org/10.1111/1751-7915.13699
  5. Kalyandurg P.B., Sundararajan P., Dubey M., Ghadamgah F., Zahid M.A., Whisson S.C., Vetukuri R.R. // Phytopathology. 2021. V. 111. P. 2166–2175. https://doi.org/10.1094/phyto-02-21-0054-sc
  6. Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q. (Max), Xu Z.P. // Nat. Plants. 2017. V. 3. P. 1–10. https://doi.org/10.1038/nplants.2016.207
  7. Islam M.T., Sherif S.M. // Int. J. Mol. Sci. 2020. V. 21. P. 2072. https://doi.org/10.3390/ijms21062072
  8. Konakalla N.C., Bag S., Deraniyagala A.S., Culbreath A.K., Pappu H.R. // Viruses. 2021. V. 13. P. 662. https://doi.org/10.3390/v13040662
  9. Sundaresha S., Sharma S., Bairwa A., Tomar M., Kumar R., Bhardwaj V., Jeevalatha A., Bakade R., Salaria N., Thakur K., Singh B.P., Chakrabarti S.K. // Pest. Manag. Sci. 2022. V. 78. P. 3183–3192. https://doi.org/10.1002/ps.6949
  10. Gan D., Zhang J., Jiang H., Jiang T., Zhu S., Cheng B. // Plant Cell Rep. 2010. V. 29. P. 1261–1268. https://doi.org/10.1007/s00299-010-0911-z
  11. Tenllado F., Martinez-Garcia B., Vargas M., Diaz-Ruiz J.R. // BMC Biotechnol. 2003. V. 3. P. 3. https://doi.org/10.1186/1472-6750-3-3
  12. Ivanov A.A., Golubeva T.S. // J. Fungi. 2023. V. 9. P. 1100. https://doi.org/10.3390/jof9111100
  13. Verdonck T.W., Yanden Broeck J. // Front. Physiol. 2022. V. 13. P. 836106. https://doi.org/10.3389/fphys.2022.836106
  14. Ann S.-J., Donahue K., Koh Y., Martin R.R., Choi M.-Y. // Int. J. Insect Sci. 2019. V. 11. P. 4032. https://doi.org/10.1177/1179543319840323
  15. Wang Z., Li Y., Zhang B., Gao X., Shi M., Zhang S., Zhong S., Zheng Y., Liu X. // Adv. Funct. Mater. 2023. V. 33. P. 3143. https://doi.org/10.1002/adfm.202213143
  16. Guan R., Chu D., Han X., Miao X., Li H. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 3790. https://doi.org/10.3389/fbioe.2021.753790
  17. Strezsak S., Beuning P., Skizim N. // Anal. Methods. 2021. V. 13. P. 179–185. https://doi.org/10.1039/DDAY01498B
  18. Aranda P.S., Lajoie D.M., Joreyk C.L. // Electrophoresis. 2012. V. 33. P. 366–369. https://doi.org/10.1002/elps.20110335
  19. Livshits M.A., Amosova O.A., Lyubchenko Y.L. // J. Biomol. Struct. Dyn. 1990. V. 7. P. 1237–1249. https://doi.org/10.1080/073911102.1990.10508562
  20. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen L.T., Miller E., Bache M.S., Muller K., Ooms J., Robinson D., Seidel P.D., Spinu V., Takahashi K., Yanghan D., Wilke C., Woo K., Yutani H. // J. Open Source Softw. 2019. V. 4. P. 1686. https://doi.org/10.21105/joss.01686

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».