Neuro-Tumor Relationships and Their Clinical and Physiological Significance
- Authors: Krupatkin I.A1, Sidorov V.V1,2
-
Affiliations:
- NPP “Lazma”
- Priorov National Research Medical Center of Traumatology and Orthopedics of the Ministry of Health of the Russian Federation
- Issue: Vol 51, No 6 (2025)
- Pages: 195-208
- Section: ОБЗОРЫ
- URL: https://ogarev-online.ru/0131-1646/article/view/375875
- DOI: https://doi.org/10.7868/S3034615025060153
- ID: 375875
Cite item
Abstract
About the authors
I. A Krupatkin
NPP “Lazma”
Email: krupatkin.sci@gmail.com
ORCID iD: 0009-0006-9256-3426
Medical Researcher Moscow, Russian Federation
V. V Sidorov
NPP “Lazma”; Priorov National Research Medical Center of Traumatology and Orthopedics of the Ministry of Health of the Russian Federation
Email: victor.v.sidorov@mail.ru
ORCID iD: 0000-0002-0594-1534
Ph.D., General Director Moscow, Russian Federation; Moscow, Russian Federation
References
- Онкология: Национальное руководство. Краткое издание / Под ред. Чиссова В.И., Давыдова М.И. М.: ГЭОТАР-Медиа, 2017. 576 с.
- Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation // Cell. 2011. V. 144. № 5. P. 646.
- Lempesis I.G., Georgakopoulou V.E., Papalexis P. et al. Role of stress in the pathogenesis of cancer // Int. J. Oncol. 2023. V. 63. № 5. P. 124.
- Глушков А.Н. Общебиологические закономерности и механизмы канцерогенеза // Медицина в Кузбассе. 2004. Т. 3. № 1. C. 3.
- Levine A.J. p53: 800 million years of evolution and 40 years of discovery // Nat. Rev. Cancer. 2020. V. 20. № 8. P. 471.
- Pan C., Winkler F. Insights and opportunities at the crossroads of cancer and neuroscience // Nat. Cell Biol. 2022. V. 24. № 10. P. 1454.
- Mancusi R., Monje M. The neuroscience of cancer // Nature. 2023. V. 618. № 7965. P. 467.
- Куликов Е.П., Судаков А.И., Каминский Ю.Д. и др. Основные прогностические факторы, влияющие на качество жизни пациентов, получавших лечение рака прямой кишки // Паллиативная медицина и реабилитация. 2020. № 3. C. 5.
- Zhang Z., Gang Lv Z., Lu M. et al. Nerve-tumor crosstalk in tumor microenvironment: From tumor initiation and progression to clinical implications // Biochim. Biophys. Acta Rev. Cancer. 2024. V. 1879. № 4. P. 189121.
- Jiang S.-H., Hu L.-P., Wang H. et al. Neurotransmitters: Emerging targets in cancer // Oncogene. 2020. V. 39. № 3. P. 503.
- Mravec B. Neurobiology of cancer: Definition, hysterical overview, and clinical implications // Cancer Med. 2022. V. 11. № 4. P. 903.
- Faulkner S., Jobling P., March B. et al. Tumor neurobiology and the war of nerves in cancer // Cancer Discov. 2019. V. 9. № 6. P. 702.
- Ayala G. Neuroepithelial interactions in cancer // Annu. Rev. Pathol. 2023. V. 18. P. 493.
- Silverman D.A., Martinez V.K., Dougherty P.M. et al. Cancer-associated neurogenesis and nerve-cancer cross-talk // Cancer Res. 2021. V. 81. № 6. P. 1431.
- Magnon C., Hall S.J., Lin J. et al. Autonomic nerve development contributes to prostate cancer progression // Science. 2013. V. 341. № 6142. P. 1236361.
- Chen H., Liu D., Guo L. et al. Chronic psychological stress promotes lung metastatic colonization of circulating breast cancer cells by decorating a pre-metastatic niche through activating beta-adrenergic signaling // J. Patol. 2018. V. 244. № 1. P. 49.
- Mravec B., Tibensky M. Increased cancer incidence in “cold” countries: An (un)sympathetic connection? // J. Therm. Biol. 2020. V. 89. P. 102538.
- Park H., Lee C.H. The contribution of the nervous system in the cancer progression // BMB Rep. 2024. V. 57. № 4. P. 167.
- Konishi M., Hayakawa Y., Koike K. Role of muscarinic acetylcholine signaling in gastrointestinal cancers // Biomedicines. 2019. V. 7. № 3. P. 58.
- Kamiya A., Hiyama T., Fujimura A., Yoshikawa S. Sympathetic and parasympathetic innervation in cancer: Therapeutic implications // Clin. Auton. Res. 2021. V. 31. № 2. P. 165.
- Zhao C.M., Hayakawa Y., Kodama Y. et al. Denervation suppresses gastric tumorigenesis // Sci. Transl. Med. 2014. V. 6. № 250. P. 250a115.
- Renz B.W., Tanaka T., Sunagawa M. et al. Cholinergic signaling via muscarinic receptors directly and indirectly suppresses pancreatic tumorigenesis and cancer stemness // Cancer Discov. 2018. V. 8. № 11. P. 1458.
- Zhang L., Guo L., Tao M. et al. Parasympathetic neurogenesis is strongly associated with tumor budding and correlates with an adverse prognosis in pancreatic ductal adenocarcinoma // Chin. J. Cancer Res. 2016. V. 28. № 2. P. 180.
- Cui Q., Jiang D., Zhang Y., Chen C. The tumor-nerve circuit in breast cancer // Cancer Metastasis Rev. 2023. V. 42. № 2. P. 543.
- Saloman J.L., Albers K.M., Hartman D.J. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. № 11. P. 3078.
- Sinha S., Fu Y.-Y., Grimont A. et al. PanIN neuroendocrine cells promote tumorigenesis via neuronal cross-talk // Cancer Res. 2017. V. 77. № 8. P. 1868.
- Peterson S.C., Eberl M., Vagnozzi A.N. et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches // Cell Stem Cell. 2015. V. 16. № 4. P. 400.
- Yoneda T., Hiasa M., Okui T. Crosstalk between sensory nerves and cancer in bone // Curr. Osteoporos. Rep. 2018. V. 16. № 6. P. 648.
- Erin N., Shurin G.V., Baraldi J.H., Shurin M.R. Regulation of carcinogenesis by sensory neurons and neuromediators // Cancers (Basel). 2022. V. 14. № 9. P. 2333.
- Жукова Г.В., Шихарова А.Н., Протасова Т.П. и др. Влияние хронической боли различной этиологии на опухолевой процесс в эксперименте // Современные проблемы науки и образования. 2020. № 2. С. 143.
- Ayala G.E., Dai H., Powell M. et al. Cancer-related axonogenesis and neurogenesis in prostate cancer // Clin. Cancer Res. 2008. V. 14. № 23. P. 7593.
- Magnon C., Hondermarek H. The neural addiction of cancer // Nat. Rev. Cancer. 2023. V. 23. № 5. P. 317.
- Szpunar M.J., Burke K.A., Dawes R.P. et al. The antidepressant desipramine and α2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure // Cancer Prev. Res. (Phila). 2013. V. 6. № 12. P. 1262.
- Dlamini Z., Khanyile R., Molefi T. Genomic interplay between neoneurogenesis and neoangiogenesis in carcinogenesis: Therapeutic interventions // Cancers (Basel). 2023. V. 15. № 6. P. 1805.
- Zahalka A.H., Arnal-Estapé A., Maryanovich M. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer // Science. 2017. V. 358. № 6361. P. 321.
- Walker A.K., Martelli D., Ziegler A.I. et al. Circulating epinephrine is not required for chrono stress to enhance metastasis // Psychoneuroendocrinology. 2019. V. 99. P. 191.
- Vasudev N.S., Reynolds A.R. Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions // Angiogenesis. 2014. V. 17. № 3. P. 471.
- Bucsek M.J., Qiao G., MacDonald C.R. Beta-adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy // Cancer Res. 2017. V. 77. № 20. P. 5639.
- Ding Y., Lee M., Gao Y. et al. Neuropeptide Y nerve paracrine regulation of prostate cancer oncogenesis and therapy resistance // Prostate. 2021. V. 81. № 1. P. 58.
- Munoz M., Coveñas R. Neurokinin-1 receptor: A new promising target in the treatment of cancer // Discov. Med. 2010. V. 10. № 53. P. 305.
- Fischer A., Rennert H.S., Rennert G. Selective serotonin reuptake inhibitors associated with increased mortality risk in breast cancer patients in northern Israel // Int. J. Epidemiol. 2022. V. 51. № 3. P. 807.
- Liu Q., Sun H., Liu Y. et al. HTR1A inhibits the progression of triple-negative breast cancer via TGF-β canonical and noncanonical pathways // Adv. Sci (Weinh). 2022. V. 9. № 12. P. e2105672.
- McCallum G.A., Shiralkar J., Suciu D. et al. Chronic neural activity recorded within breast tumors // Sci. Rep. 2020. V. 10. № 1. P. 14824.
- Sloan E.K., Priceman S.J., Cox B.F. et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer // Cancer Res. 2010. V. 70. № 18. P. 7042.
- Dubeykovskaya Z., Si Y., Chen X. et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer // Nat. Commun. 2016. V. 7. P. 10517.
- Mohammadpour H., MacDonald C.R., Qiao G. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells // J. Clin. Invest. 2019. V. 129. № 12. P. 5537.
- Schmid L.B., Perez-Pacheco C., De Silva N.J. Nerve density in cancer: Less is better // FACEB Bioadv. 2021. V. 3. № 10. P. 773.
- Kloter E., Barruejo K., Klein S.D. et al. Heart rate variability as a prognostic factor for cancer survival – a systematic review // Front. Physiol. 2018. V. 9. P. 623.
- Tibensky M., Mravec B. Role of parasympathetic nervous system in cancer initiation and progression // Clin. Translat. Oncol. 2021. V. 23. № 4. P. 669.
- Mitsou J.D., Tseveleki V., Dimitrakopoulos F.-I. et al. Radical tumor denervation activates potent local and global cancer treatment // Cancers (Basel). 2023. V. 15. № 15. P. 3758.
- Coarfa C., Florentin D., Putluri N. et al. Influence of the neural microenvironment on prostate cancer // Prostate. 2018. V. 78. № 2. P. 128.
- Xie M., Guo F., Song L. et al. Noninvasive neuromodulation protects against doxorubicin-induced cardiotoxicity and inhibits tumor growth // iScience. 2024. V. 27. № 3. P. 109163.
- Griffin N., Faulkner S., Jobbling P. et al. Targeting neurotrophin signaling in cancer: The renaissance // Pharmacol. Res. 2018. V. 135. P. 12.
Supplementary files

