Intersubject Synchronization Among the Audience During a Theatre Rehearsal. A Pilot EEG Hyperscanning Study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present the results of inter-brain synchronization analysis among the audience during a fairy-tale theater performance. The study examines synchronization between participants without external stimulus synchronization (i.e., without evoked potentials). The EEG (electroencephalography) data was synchronized via specialized technical signals that didn’t attract the attention of the participants and were used solely to ensure precise temporal alignment of EEG fragments across different stages of the performance. The obtained data were analyzed both individually and in pairs. Individual analysis assessed EEG spectral power during rest and before, during, and after the performance in Δ (1.5–4 Hz), θ (4–8 Hz), α1 (8–10 Hz), α2 (10–13 Hz), β1 (13–18 Hz), and β2 (18–30 Hz)-frequency bands. Pairwise analysis (21 pairs, where all participants were paired with each other) evaluated phase locking value (PLV) and circular correlation coefficient (CCorr). No differences in baseline spectral power (pre-vs. post-performance) were detected, suggesting an absence of viewers’ fatigue. However, a decrease of the EEG spectral power was observed in the α1- and α2-frequency bands, potentially connected with viewer engagement, selective attention, and emotional immersion in the narrative. Inter-brain synchronization metrics (both PLV and CCorr) revealed increased synchronization in θ-, α1- and α2-bands over centro-parieto-occipital regions, coupled with reduced frontal region synchronization (relative to artificially generated data) pronounced during the second stage of the performance. This likely corresponds to the narrative’s culmination.

About the authors

E. M Zavodova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: catherine.zavodova@itmo.ru
ORCID iD: 0009-0000-0329-4487
Junior Researcher St. Petersburg, Russian Federation

Zh. V Nagornova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: nagornova_zh@mail.ru
ORCID iD: 0000-0002-6476-3141
PhD in Biology, Senior Researcher St. Petersburg, Russian Federation

N. A Zyryanov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: zenikich2000@gmail.com
Senior Research Assistant St. Petersburg, Russian Federation

N. V Shemyakina

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: shemyakina_n@mail.ru
ORCID iD: 0000-0002-8936-0082
PhD in Biology, Leading Researcher St. Petersburg, Russian Federation

References

  1. Montague P.R., Berns G.S., Cohen J.D. et al. Hyperscanning: simultaneous fMRI during linked social interactions // NeuroImage. 2002. V. 16. № 4. P. 1159.
  2. Dumas G. Towards a two-body neuroscience // Commun. Integr. Biol. 2011. V. 4. № 3. P. 349.
  3. Babiloni F., Astolfi L. Social neuroscience and hyperscanning techniques: Past, present and future // Neurosci. Biobehav. Rev. 2012. V. 44. P. 76.
  4. Sänger J., Lindenberger U., Müller V. Interactive brains, social minds // Commun. Integr. Biol. 2011. V. 4. № 6. P. 655.
  5. Hakim U., De Felice S., Pinti P. et al. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies // NeuroImage. 2023. V. 280. P. 120354.
  6. Шемякина Н.В., Нагорнова Ж.В. Нейрофизиологические характеристики соревнования в навыках и кооперации при выполнении творческих задач — обзор исследований с использованием технологии гиперсканингиа // Физиология человека. 2021. Т. 47. № 1. С. 104.
  7. Schwartz L., Levy J., Endevelt-Shapira Y. et al. Technologically-assisted communication attenuates inter-brain synchrony // NeuroImage. 2022. V. 264. P. 119677.
  8. Deng X., Chen X., Wang J. The paradox of social avoidance and the yearning for understanding: Elevated interbrain synchrony among socially avoidant individuals during expression of negative emotions // Int. J. Clin. Health Psychol. 2024. V. 24. № 3. P. 100500.
  9. Greaves D.A., Pinti P., Din S. et al. Exploring theater neuroscience: Using wearable functional near-infrared spectroscopy to measure the sense of self and interpersonal coordination in professional actors // J. Cogn. Neurosci. 2022. V. 34. № 12. P. 2215.
  10. Michalareas G., Rudwan I.M.A., Lehr C. et al. A scalable and robust system for audience EEG recordings // Heliyon. 2023. V. 9. № 10. P. e20725.
  11. Müller V., Lindenberger U. Intra- and interbrain synchrony and hyperbrain network dynamics of a guitarist quartet and its audience during a concert // Ann. N. Y. Acad. Sci. 2023. V. 1523. № 1. P. 74.
  12. Ramírez-Moreno M.A., Cruz-Garza J.G., Acharya A. et al. Brain-to-brain communication during musical improvisation: A performance case study // F1000Res. 2023. V. 11. P. 989.
  13. Chabin T., Gabriel D., Comte A., Pazart L. Audience interbrain synchrony during live music is shaped by both the number of people sharing pleasure and the strength of this pleasure // Front. Hum. Neurosci. 2022. V. 16. P. 855778.
  14. Acquadro M.A., Congedo M., De Ridder D. Music Performance as an experimental approach to hyperscanning studies // Front. Hum. Neurosci. 2016. V. 10. P. 242.
  15. Bhattacharya J., Petsche H. Drawing on mind’s canvas: Differences in cortical integration patterns between artists and non-artists // Hum. Brain Mapp. 2005. V. 26. № 1. P. 1.
  16. Sigl J.C., Chamoun N.G. An introduction to bispectral analysis for the electroencephalogram // J. Clin. Monit. 1994. V. 10. № 6. P. 392.
  17. Høffding S., Yi W., Lippert E. et al. Into the Hive-Mind: Shared absorption and cardiac interrelations in expert and student string quartets // Music Sci. 2023. V. 6. doi: 10.1177/20592043231168597
  18. Vigário R.N. Extraction of ocular artefacts from EEG using independent component analysis // Electroencephalogr. Clin. Neurophysiol. 1997. V. 103. № 3. P. 395.
  19. Jung T.P., Makeig S., Westerfield M. et al. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects // Clin. Neurophysiol. 2000. V. 111. № 10. P. 1745.
  20. Терещенко Е.П., Пономарев В.А., Кропотов Ю.Д., Мюллер А. Сравнение эффективности различных методов удаления артефактов морганий при анализе количественной электроэнцефалограммы и вызванных потенциалов // Физиология человека. 2009. Т. 35. № 2. С. 124.
  21. Bendat J.S., Piersol A.G., Saunders H. Random data-analysis and measurement procedures // J. Vib. Acoust. 1989. V. 111. № 3. P. 354.
  22. Jammalamadaka S.R., SenGupta A. Topics in circular statistics / Series on multivariate analysis. World Scientific, Singapore, 2001. 336 p.
  23. Ayrolles A., Brun F., Chen P. et al. HyPyP: A Hyperscanning Python Pipeline for inter-brain connectivity analysis // Soc. Cogn. Affect Neurosci. 2021. V. 16. № 1–2. P. 72.
  24. Huynh H., Feldt L.S. Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs // J. Educ. Stat. 1976. V. 1. P. 69.
  25. Tran Y., Craig A., Craig R. et al. The influence of mental fatigue on brain activity: Evidence from a systematic review with meta-analyses // Psychophysiology. 2020. V. 57. № 5. P. e13554.
  26. Wascher E., Rasch B., Sänger J. et al. Frontal theta activity reflects distinct aspects of mental fatigue // Biol. Psychol. 2013. V. 96. P. 57.
  27. Cajochen C., Brunner D.P., Krauch K. et al. Power density in Theta/Alpha frequencies of the waking EEG progressively increases during sustained wakefulness // Sleep. 1995. V. 18. № 10. P. 890.
  28. Pfurtscheller G. Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest // Electroencephalogr. Clin. Neurophysiol. 1992. V. 83. № 1. P. 62.
  29. Klimesch W. Memory processes, brain oscillations and EEG synchronization // Int. J. Psychophysiol. 1996. V. 24. № 1–2. P. 61.
  30. Klimesch W., Schimke H., Pfurtscheller G. Alpha frequency, cognitive load and memory performance // Brain Topogr. 1993. V. 5. № 3. P. 241.
  31. Klimesch W., Schimke H., Schwatger J. Episodic and semantic memory: An analysis in the EEG theta and alpha band // Electroencephalogr. Clin. Neurophysiol. 1994. V. 91. № 6. P. 428.
  32. Klimesch W., Schimke H., Doppelmayr M. et al. Event-related desynchronization (ERD) and the Dm effect: Does alpha desynchronization during encoding predict later recall performance? // Int. J. Psychophysiol. 1996. V. 24. № 1–2. P. 47.
  33. Шемякина Н.В., Нагорнова Ж.В., Грохотова А.В. и др. Изучение ЭЭГ-характеристик эстетического восприятия и оценки произведений живописи в условиях посещения музея. Нейроэстетическое исследование // Физиология человека. 2024. Т. 50. № 4. С. 32.
  34. Peylo C., Hilla Y., Sausserg P. Cause or consequence? Alpha oscillations in visuospatial attention // Trends Neurosci. 2021. V. 44. № 9. P. 705.
  35. Romeo Z., Fusina F., Semenzato L. et al. Comparison of slides and video clips as different methods for inducing emotions: An electroencephalographic alpha modulation study // Front. Hum. Neurosci. 2022. V. 16. P. 901422.
  36. Tanaka S. Mirror neuron activity during audiovisual appreciation of opera performance // Front. Psychol. 2021. V. 11. P. 563031.
  37. Babiloni C., Buffo P., Vecchio F. et al. Brains “in concert”: Frontal oscillatory alpha rhythms and empathy in professional musicians // NeuroImage. 2011. V. 60. № 1. P. 105.
  38. Oberman L.M., Pineda J.A., Ramachandran V.S. The human mirror neuron system: A link between action observation and social skills // Soc. Cogn. Affect. Neurosci. 2006. V. 2. № 1. P. 62.
  39. Iacoboni M., Dapretto M. The mirror neuron system and the consequences of its dysfunction // Nat. Rev. Neurosci. 2006. V. 7. № 12. P. 942.
  40. Molenberghs P., Cunnington R., Mattingley J.B. Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies // Neurosci. Biobehav. Rev. 2012. V. 36. № 1. P. 341.
  41. Molenberghs P., Hayward L., Mattingley J.B., Cunnington R. Activation patterns during action observation are modulated by context in mirror system areas // Neuroimage. 2012. V. 59. № 1. P. 608.
  42. Tervaniemi M., Pousi S., Seppala M., Makkonen T. Brain oscillation recordings of the audience in a live concert-like setting // Cogn. Process. 2021. V. 23. № 2. P. 329.
  43. Nemati S., Akrami H., Salehi S. et al. Lost in music: Neural signature of pleasure and its role in modulating attentional resources // Brain Res. 2019. V. 1711. P. 7.
  44. Djalovski A., Dumas G., Kureich S., Feldman R. Human attachments shape interbrain synchrony toward efficient performance of social goals // NeuroImage. 2020. V. 226. P. 117600.
  45. Bernhardt B.C., Singer T. The neural basis of empathy // Annu. Rev. Neurosci. 2012. V. 35. P. 1.
  46. Pérez A., Dumas G., Karadag M., Duñabeitia J.A. Differential brain-to-brain entrainment while speaking and listening in native and foreign languages // Cortex. 2018. V. 111. P. 303.
  47. Dumas G., Nadel J., Soussignan R. et al. Inter-brain synchronization during social interaction // PLoS One. 2010. V. 5. № 8. P. e12166.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).