Application of the Method of Variance Analysis in Small Sample Statistics in Biomedical Research

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In some areas of physiology (for example, space physiology), researchers have to deal with small samples, which makes it impossible to use classical data analysis methods and requires other approaches. Small samples are characterized by an increased influence of individual characteristics of a specific organism on the nature of the adaptation process. In this regard, a relevant task is to separate the effect of the influencing factor and individual reactions. We propose a new approach to the small sample data analysis using the example of adaptive changes in the cardiovascular system (CVS) in women under reproducing the effects of microgravity in a 5-day dry immersion (DI). Changes in the cardiovascular system were assessed using indicators reflecting hemodynamics and autonomic modulating effects on the heart rhythm. The aim of the work was to identify indicators reflecting the influencing factor effect, as well as indicators reflecting the individual characteristics of the test subjects in the experimental sample. For this purpose, our data analysis employed a methodological approach based on analysis of variance (ANOVA). As a result, we conducted a comprehensive analysis of the small sample data with a statistically justified separation of the studied factor influence and the subject individual reactions, and also identified specific individuals influencing the homogeneity of the entire sample. The presented approach allows, at the initial stage of analysis, to select those indicators that reflect the impact of the factor being studied and, accordingly, meet the set goals, while excluding indicators in which the contribution of individual characteristics is so great that it makes them inappropriate for consideration in the current study.

About the authors

M. V Fedchuk

Institute of Biomedical Problems of the Russian Academy of Sciences

Email: fedchmaria@gmail.com
ORCID iD: 0009-0006-1627-2379
Junior Researcher Moscow, Russian Federation

V. B Rusanov

Institute of Biomedical Problems of the Russian Academy of Sciences

Email: rusvb@imbp.ru
ORCID iD: 0000-0001-6658-8079
Dr. Sci. (Biology), Leading Researcher, Head of the Laboratory Moscow, Russian Federation

A. M Nosovsky

Institute of Biomedical Problems of the Russian Academy of Sciences

Email: nam@imbp.ru
ORCID iD: 0000-0002-2657-2723
Dr. Sci. (Biology), Leading Researcher Moscow, Russian Federation

O. I Orlov

Institute of Biomedical Problems of the Russian Academy of Sciences

Email: orlov@imbp.ru
ORCID iD: 0000-0001-8429-1076
Dr. Sci. (Medicine), Full Member of the Russian Academy of Sciences, Director Moscow, Russian Federation

References

  1. Fisher R.A. Statistical methods for research workers. 5th ed. London: Oliver and Boyd, 1934. 198 p.
  2. Шеффе Г. Дисперсионный анализ / Пер. с англ. М.: Наука, 1980. 512 с.
  3. Гржибовский А.М. Анализ трех и более независимых групп количественных данных // Экология человека. 2008. № 3. C. 50.
  4. Yates F. The analysis of multiple classifications with unequal numbers in the different classes // J. Am. Stat. Assoc. 1934. V. 29. № 185. P. 51.
  5. Milliken G.A., Johnson D.E. Analysis of messy data. V. 1. Designed Experiments. 2nd ed. New York: Chapman and Hall/CRC, 2009. 674 p. https://doi.org/10.1201/EBK1584883340
  6. Thayer J.F., Hansen A.L., Saus-Rose E., Johnsen B.H. Heart rate variability, prefrontal neural function and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health // Ann. Behav. Med. 2009. V. 37. № 2. P. 141.
  7. Porges S.W., Furman S.A. The early development of the autonomic nervous system provides a neural platform for social behavior: A polyvagal perspective // Infant Child Dev. 2011. V. 20. № 1. P. 106.
  8. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology // Circulation. 1996. V. 93. № 5. P. 1043.
  9. Баевский Р.М., Иванов Г.Г., Чирейкин Л.В. и др. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (методические рекомендации) // Вестник аритмологии. 2001. № 24. С. 65.
  10. Лучицкая Е.С., Фунтова И.И., Tank J. и др. Измерение показателей, характеризующих раннее сосудистое старение, с использованием осциллометрического метода в космическом полете // Авиакосм. и экол. мед. 2021. T. 55. № 6. C. 23.
  11. Toothaker L.E. Multiple comparison procedures. Thousand Oaks: Sage, 1993. 96 p.
  12. Williams L.J., Abdi H. Fisher’s Least Significant Difference Test // Encyclopedia of Research Design / Ed. N.J. Salkind. Thousand Oaks: Sage, 2010. V. 1. P. 491. https://doi.org/10.4135/9781412961288.n154
  13. Tukey J.W. Exploratory data analysis. Reading, MA: Addison-Wesley, 1977. V. 2. 688 p.
  14. Bittner A.C. Analysis-of-variance (ANOVA) assumptions review: Normality, variance equality, and independence // The XXXIVth Annual International Occupational Ergonomics and Safety Conference (Virtual Conference). 15–16 Sept. 2022, Washington. 2022. P. 28.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).