Mechanisms of developmental dyslexia: A review of the hypotheses formed based on the experimental studies


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Specific reading impairments (developmental dyslexia) is a widespread problem: according to recent studies, from five to twenty percent of the population in different countries suffer from this impairment. Effective planning of the intervention programs for people with dyslexia requires taking into account a wide range of possible causes of impairment of complex reading skills. Experimental studies are conducted worldwide targeting the mechanisms of the developmental dyslexia at different levels: at the level of cognitive functions, at the level of brain mechanisms, at the genetic level. This paper presents an overview of scientific hypotheses on the mechanisms of dyslexia at the level of cognitive functions. The information presented in this review may be useful to speech pathologists, neurologists, speech therapists, neuropsychologists and other specialists working with people with reading disorders.

About the authors

S. V. Dorofeeva

HSE University (National Research University Higher School of Economics)

Author for correspondence.
Email: sdorofeeva@gmail.com
Moscow, Russia

References

  1. Kearns D.M., Hancock R., Hoeft F. et al. The neurobiology of dyslexia // Teaching Exceptional Children. 2019. V. 51 № 3. Р. 175.
  2. Wagner R.K., Zirps F.A., Edwards A.A. et al. The prevalence of dyslexia: A new approach to its estimation // J. Learn. Disabil. 2020. V. 53. № 5. P. 354.
  3. Törö K.T., Miklósi M., Horanyi E. et al. Reading disability spectrum: Early and late recognition, subthreshold, and full comorbidity // J. Learn. Disabil. 2018. V. 51. № 2. P. 158.
  4. Barbiero C., Montico M., Lonciari I. et al. The lost children: The underdiagnosis of dyslexia in Italy. A cross-sectional national study // PLoS One. 2019. V. 14. № 1. P. e0210448.
  5. Cavalli E., Colé P., Leloup G. et al. Screening for dyslexia in french-speaking university students: An evaluation of the detection accuracy of the Alouette test // J. Learn. Disabil. 2017. V. 51. № 3. P. 268.
  6. Dorofeeva S.V. [Linguistic aspects of dyslexia and dysgraphia intervention: Experience of successful application of an integrated approach] // Voprosy Psicholinguistiki. 2017. № 3. P. 185.
  7. Akhutina T.V., Korneev A.A., Matveeva E.Yu. et al. [Methods of neuropsychological assessment of children aged 6–9 years]. Ed. Akhutina T.V. Moscow: V. Sekachev, 2016. 280 p.
  8. Zakharov V.V. [Cognitive impairments in neurological practice] // Difficult Patient. 2005. V. 3. № 5. P. 4.
  9. Luria A.R. [Higher cortical functions of man and their impairments after local brain lesions]. Moscow: Moscow State University Publishing House, 1962. 432 p.
  10. Dehaene S., Cohen L., Morais J., Kolinsky R. Illiterate to literate: Behavioural and cerebral changes induced by reading acquisition // Nat. Rev. Neurosci. 2015. V. 16. № 4. P. 234.
  11. Levesque K.C., Kieffer M.J., Deacon S.H. Morpho-logical awareness and reading comprehension: Examining mediating factors // J. Exp. Child Psychol. 2017. V. 160. P. 1.
  12. Isoaho P., Kauppila T., Launonen K. Specific language impairment (SLI) and reading development in early school years // Child Lang. Teach. Ther. 2016. V. 32. № 2. P. 147.
  13. Lam J.H.Y., Leachman M.A., Pratt A.S. A systematic review of factors that impact reading comprehension in children with developmental language disorders // Res. Dev. Disabil. 2024. V. 149. P. 104731.
  14. Share D.L. Common misconceptions about the phonological deficit theory of dyslexia // Brain Sci. 2021. V. 11. № 11. P. 1510.
  15. Torgesen J.K., Wagner R.K., Rashotte C.A. Longitudinal studies of phonological processing and reading // J. Learn. Disabil. 1994. V. 27. № 5. P. 276.
  16. Anthony J.L., Lonigan C.J., Burgess S.R. et al. Structure of preschool phonological sensitivity: Overlapping sensitivity to rhyme, words, syllables, and phonemes // J. Exp. Child Psychol. 2002. V. 82. № 1. P. 65.
  17. Marshall C.M., Snowling M.J., Bailey P.J. Rapid auditory processing and phonological ability in normal readers and readers with dyslexia // J. Speech Lang. Hear. Res. 2001. V. 44. № 4. P. 925.
  18. Mody M. Phonological basis in reading disability: A review and analysis of the evidence // Reading and Writing. 2003. V. 16. № 1. P. 21.
  19. Gearin B., Turtura J., Anderson K. et al. An interdisciplinary perspective on the strengths and weaknesses of the International Dyslexia Association definition of dyslexia // Ann. Dyslexia. 2024. V. 74. № 3. P. 337.
  20. Elliott J.G., Grigorenko E.L. Dyslexia in the twenty-first century: A commentary on the IDA definition of dyslexia // Ann. Dyslexia. 2024. V. 74. № 3. P. 363.
  21. Ramus F., Rosen S., Dakin S. et al. Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults // Brain. 2003. V. 126. № 4. P. 841.
  22. Dorofeeva S.V., Iskra E., Goranskaya D. et al. Cognitive requirements of the phonological tests affect their ability to discriminate children with and without developmental dyslexia // J. Speech Lang. Hear. Res. 2022. V. 65. № 10. P. 3809.
  23. Wolf M., Bowers P.G. The double-deficit hypothesis for the developmental dyslexias // J. Educ. Psychol. 1999. V. 91. № 3. P. 415.
  24. Bowers P.G., Wolf M. Theoretical links among naming speed, precise timing mechanisms and orthographic skill in dyslexia // Read. Writ. 1993. V. 5. P. 69.
  25. Torppa M., Georgiou G., Salmi P. et al. Examining the double-deficit hypothesis in an orthographically consistent language // Sci. Stud. Read. 2011. V. 16. № 4. P. 287.
  26. Stein J. The current status of the magnocellular theory of developmental dyslexia // Neuropsychologia. 2019. V. 130. P. 66.
  27. Stein J. The visual basis of reading and reading difficulties // Front. Neurosci. 2022. V. 16. P. 1004027.
  28. Tallal P. Auditory temporal perception, phonics, and reading disabilities in children // Brain Lang. 1980. V. 9. № 2. P. 182.
  29. Habib M. The neurological basis of developmental dyslexia and related disorders: A reappraisal of the temporal hypothesis, twenty years on // Brain Sci. 2021. V. 11. № 6. P. 708.
  30. Benasich A.A., Tallal P. Infant discrimination of rapid auditory cues predicts later language impairment // Behav. Brain Res. 2002. V. 136. № 1. P. 31.
  31. Gaab N., Gabrieli J.D., Deutsch G.K. et al. Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: An fMRI study // Restor. Neurol. Neurosci. 2007. V. 25. № 3-4. P. 295.
  32. Lasnick O.H.M., Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia // Front. Hum. Neurosci. 2024. V. 17. P. 1294941.
  33. Hancock R., Pugh K.R., Hoeft F. Neural noise hypothesis of developmental dyslexia // Trends Cogn. Sci. 2017. V. 21. № 6. P. 434.
  34. Glica A., Wasilewska K., Jurkowska J. et al. Reevaluating the neural noise hypothesis in dyslexia: Insights from EEG and 7T MRS biomarkers // eLife. 2024. V. 13. P. RP99920.
  35. Shulver K.D., Badcock N.A. Chasing the anchor: A systematic review and meta-analysis of perceptual anchoring deficits in developmental dyslexia // J. Speech Lang. Hear. Res. 2021. V. 64. № 8. P. 3289.
  36. Ahissar M. Dyslexia and the anchoring-deficit hypothesis // Trends Cogn. Sci. 2007. V. 11. № 11. P. 458.
  37. Swan D., Goswami U. Phonological awareness deficits in developmental dyslexia and the phonological representations hypothesis // J. Exp. Child Psychol. 1997. V. 66. № 1. P. 18.
  38. Ramus F. Outstanding questions about phonological processing in dyslexia // Dyslexia. 2001. V. 7. № 4. P. 197.
  39. Kligler N., Gabay Y. A cross-modal investigation of statistical learning in developmental dyslexia // Sci. Stud. Read. 2023. V. 27. № 4. P. 334.
  40. Wokuri S., Gonthier C., Marec-Breton N., Majerus S. Heterogeneity of short-term memory deficits in children with dyslexia // Dyslexia. 2023. V. 29. № 4. P. 385.
  41. Nicolson R.I., Fawcett A.J. Automaticity: A new framework for dyslexia research? // Cognition. 1990. V. 35. № 2. P. 159.
  42. Anderson.J.R. Acquisition of cognitive skill // Psychol. Rev. 1982. V. 89. P. 369.
  43. Anderson J.R. Skill acquisition: Compilation of weak method problem solutions // Psychol. Rev. 1987. V. 94. P. 192.
  44. Yap R.L., Leij A. van der. Testing the automatization deficit hypothesis of dyslexia via a dual-task paradigm // J. Learn. Disabil. 1994. V. 27. № 10. P. 660.
  45. van der Leij A., van Daal V.H.P. Automatization aspects of dyslexia: Speed limitations in word identification, sensitivity to increasing task demands, and orthographic compensation // J. Learn. Disabil. 1999. V. 32. № 5. P. 417.
  46. Nicolson R.I., Fawcett A.J. Procedural learning difficulties: Reuniting the developmental disorders? // Trends Neurosci. 2007. V. 30. № 4. P. 135.
  47. Nicolson R.I., Fawcett A.J. Dyslexia, dysgraphia, procedural learning and the cerebellum // Cortex. 2011. V. 47. № 1. P. 117.
  48. Marinelli C.V., Martelli M., Zoccolotti P. Does the procedural deficit hypothesis of dyslexia account for the lack of automatization and the comorbidity among developmental disorders? // Cogn. Neuropsychol. 2024. V. 41. № 3-4. P. 93.
  49. Biotteau M., Chaix Y., Albaret J.M. Procedural learning and automatization process in children with developmental coordination disorder and/or developmental dyslexia // Hum. Mov. Sci. 2015. V. 43. P. 78.
  50. Howell J. Dyslexia and Rudolf Berlin: Correcting the record. Lansing, MI: Michigan Dyslexia Institute, Inc. 2020.
  51. Berlin R. Über Dyslexie [About dyslexia] // Archiv fur Psychiatrie. 1884. V. 15. P. 276.
  52. Perry C., Long H. What is going on with visual attention in reading and dyslexia? A critical review of recent studies // Brain Sci. 2022. V. 12. № 1. P. 87.
  53. Bosse M.L., Tainturier M.J., Valdois S. Developmental dyslexia: The visual attention span deficit hypothesis // Cognition. 2007. V. 104. № 2. P. 198.
  54. Tang J., Ma X., Peng P. et al. Visual attention span deficit in developmental dyslexia: A meta-analysis // Res. Dev. Disabil. 2023. V. 141. P. 104590.
  55. Taran N., Farah R., DiFrancesco M. et al. The role of visual attention in dyslexia: Behavioral and neurobiological evidence // Hum. Brain Mapp. 2022. V. 43. № 5. P. 1720.
  56. Fernández-Andrés M.I., Tejero P., Vélez-Calvo X. Visual Attention, Orthographic Word Recognition, and Executive Functioning in Children With ADHD, Dyslexia, or ADHD + Dyslexia // J. Atten. Disord. 2021. V. 25. № 7. P. 942.
  57. Saksida A., Iannuzzi S., Bogliotti C. et al. Phonological skills, visual attention span, and visual stress in developmental dyslexia // Dev. Psychol. 2016. V. 52. № 10. P. 1503.
  58. Singleton C., Henderson L.-M. Computerized screening for visual stress in children with dyslexia // Dyslexia. 2007. V. 13. № 2. P. 130.
  59. Suttle C.M., Conway M.L. Efficacy of coloured lenses for patients diagnosed with visual stress // Clin. Exp. Optom. 2024. V. 6. P. 1.
  60. Stein J. Theories about Developmental Dyslexia // Brain Sci. 2023. V. 13. № 2. P. 208.
  61. Singleton C., Trotter S. Visual stress in adults with and without dyslexia // J. Res. Read. 2005. V. 28. № 3. P. 365.
  62. Raghuram A., Gowrisankaran S., Swanson E. et al. Frequency of visual deficits in children with developmental dyslexia // JAMA Ophthalmol. 2018. V. 136. № 10. P. 1089.
  63. Kristjánsson Á., Sigurdardottir H.M. The role of visual factors in dyslexia // J. Cogn. 2023. V. 29. № 1. P. 31.
  64. Sigurdardottir H.M., Ólafsdóttir I.M., Devillez H. Words as visual objects: Neural and behavioral evidence for high-level visual impairments in dyslexia // Brain Sci. 2021. V. 11. № 11. P. 1427.
  65. Premeti A., Bucci M. P., Isel F. Evidence from ERP and eye movements as markers of language dysfunction in dyslexia // Brain Sci. 2022. V. 12. № 1. P. 73.
  66. Korneev A.A., Akhutina T.V., Matveeva E.Yu. [Reading in third graders with different state of the skill: An eye-tracking study] // Lomonosov Psychology Journal. 2019. № 2. P. 64.
  67. Korneev A.A., Matveeva E.Yu., Akhutina T.V. Eye movements in primary schoolchildren with different levels of reading skills // Human Physiology. 2020. V. 46. № 3. P. 235.
  68. Bucci M.P. Visual training could be useful for improving reading capabilities in dyslexia // Appl. Neuropsychol. Child. 2019. V. 10. № 3. P. 199.
  69. Flaherty M., Crippa J., Sim I. et al. A critique of behavioural vision therapy techniques for children with reading difficulties including dyslexia // Aust. J. Learn. Difficulties. 2024. V. 29. № 2. P. 1.
  70. Smith-Spark J.H., Henry L.A., Messer D.J. et al. Executive functions in adults with developmental dyslexia // Res. Dev. Disabil. 2016. V. 53–54. P. 323.
  71. Smith-Spark J.H., Gordon R. Automaticity and executive abilities in developmental dyslexia: A theoretical review // Brain Sci. 2022. V. 12. № 4. P. 446.
  72. Brosnan M., Demetre J., Hamill S. et al. Executive functioning in adults and children with developmental dyslexia // Neuropsychologia. 2002. V. 40. № 12. P. 2144.
  73. Taran N., Farah R., DiFrancesco M. et al. The role of visual attention in dyslexia: Behavioral and neurobiological evidence // Hum. Brain Mapp. 2022. V. 43. № 5. P. 1720.
  74. Alt M., Fox A., Levy R. et al. Phonological working memory and central executive function differ in children with typical development and dyslexia // Dyslexia. 2022. V. 28. № 1. P. 20.
  75. Pasqualotto A., Venuti P.A Multifactorial model of dyslexia: Evidence from executive functions and phonological–based treatments // Learn. Disabil. Res. Pract. 2020. V. 35. № 3. P. 150.
  76. Jednoróg K., Gawron N., Marchewka A. et al. Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume // Brain Struct. Funct. 2014. V. 219. № 5. P. 1697.
  77. Lachmann T., Bergström K. The multiple-level framework of developmental dyslexia: The long trace from a neurodevelopmental deficit to an impaired cultural technique // J. Cult. Cogn. Sci. 2023. V. 7. P. 71.
  78. Erbeli F., Rice M., Paracchini S. Insights into dyslexia genetics research from the last two decades // Brain Sci. 2022. V. 12. № 1. P. 27.
  79. Traficante D., Luzzatti C., Friedmann N. Multiple types of developmental dyslexias in a shallow orthography: Principles for diagnostic screening in italian // Brain Sci. 2024. V. 14. № 8. P. 743.
  80. Pennington B.F. From single to multiple deficit models of developmental disorders // Cognition. 2006. V. 101. № 2. P. 385.
  81. Wagner R.K., Moxley J., Schatschneider C., Zirps F.A. A Bayesian probabilistic framework for identification of individuals with Dyslexia // Sci. Stud. Read. 2022. V. 27. № 1. P. 67.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».