THE USE OF PULSED PHASE THERMOGRAPHY IN THE CONTROL OF POTATO TUBERS
- Authors: Divin A.1, Balabanov P.1, Egorov A.1, Ponomarev S.1, Muromtsev D.1, Zabrovsky V.2, Lyubimova D.1, Grinko I.1
-
Affiliations:
- Tambov State Technical University
- Tambov State Technical University Tambov State University named after G.R. Derzhavin
- Issue: No 1 (2026)
- Pages: 33-48
- Section: Thermal methods
- URL: https://ogarev-online.ru/0130-3082/article/view/320043
- DOI: https://doi.org/10.7868/S3034498026010031
- ID: 320043
Cite item
Abstract
The article deals with the problem of detecting potato tubers with phyto-diseases and mechanical damage in the early stages, which is critically important to prevent spoilage of the harvested crop during storage and transportation. The authors explore the method of active thermal control as a promising alternative to traditional methods (visual, multispectral, hyperspectral). The main idea of the method is to periodically heat the tuber surface with infrared radiation and then analyze not only the amplitude but also the phase of temperature fluctuations on the surface using a thermal imaging camera. Numerical modeling in the COMSOL environment and subsequent experiments on real samples have shown that the proposed method makes it possible to effectively detect both surface and subsurface defects (for example, dry rot) at a depth of up to 2 mm, while reducing the influence of contamination, glare and uneven illumination due to the curvature of the surface. It has been established that low periodic heating frequencies (less than 0.1 Hz) and a heat flux density of up to 1700 W/m2 should be used for optimal detection of defects at various depths. The use of an artificial neural network to classify images based on amplitude and phase components has made it possible to achieve 88% error detection accuracy
About the authors
Alexander Divin
Tambov State Technical University
Author for correspondence.
Email: agdv@yandex.ru
ORCID iD: 0000-0001-7578-0505
профессор, профессор кафедры "Мехатроника и технологические измерения"
Russian Federation, 392000 Tambov, Sovetskaya str., 106Pavel Balabanov
Tambov State Technical University
Email: pav-balabanov@yandex.ru
Russian Federation, 392000 Tambov, Sovetskaya str., 106
Andrey Egorov
Tambov State Technical University
Email: egorov.andrey@list.ru
Russian Federation, 392000 Tambov, Sovetskaya str., 106
Sergey Ponomarev
Tambov State Technical University
Email: svponom@yahoo.com
Russian Federation, 392000 Tambov, Sovetskaya str., 106
Dmitry Muromtsev
Tambov State Technical University
Email: nauka@tstu.ru
Russian Federation, 392000 Tambov, Sovetskaya str., 106
Victor Zabrovsky
Tambov State Technical UniversityTambov State University named after G.R. Derzhavin
Email: sq90@mail.ru
Russian Federation, 392000 Tambov, Sovetskaya str., 106
392000 Tambov, Internatsionalnaya str., 36
Daria Lyubimova
Tambov State Technical University
Email: divinadar@yandex.ru
Russian Federation, 392000 Tambov, Sovetskaya str., 106
Ilya Grinko
Tambov State Technical University
Email: skyteks@coud.com
Russian Federation, 392000 Tambov, Sovetskaya str., 106
References
- Haq Z.A., Ashhad M., Jaffery Z.A., Mehfuz S. Infrared Imaging Technique and Multi-Input Neural Network for Potato Defect Detection / 2023 International Conference on Recent Advances in Electrical, Electronics and Digital Healthcare Technologies, REEDCON 2023. 2023. P. 196—200. doi: 10.1109/REEDCON57544.2023.10150501
- Zhu Q., Guan J., Huang M., Lu R., Mendoza F. Predicting bruise susceptibility of ‘Golden Delicious’ apples using hyperspectral scattering technique // Postharvest Biol. Technol. 2016. V. 114. P. 415—424. doi: 10.1016/j.postharvbio.2015.12.007
- Al Riza D. F., Widodo S., Yamamoto K., Ninomiya K., Suzuki T., Ogawa Y., Kondo N. External defects and severity level evaluation of potato using single and multispectral imaging in near infrared region // Inf. Process. Agric. 2024. V. 11. No. 1. P. 142—154. doi: 10.1016/j.inpa.2022.09.001
- Al Riza D.F., Suzuki T., Ogawa Y., Kondo N. Diffuse reflectance characteristic of potato surface for external defects discrimination // Postharvest Biol. Technol. 2017. V. 133. P. 88—96. doi: 10.1016/j.postharvbio.2017.07.006
- Ding J.G., Han D.H., Li Y.Y., Peng Y.K., Wang Q., Han X. Simultaneous Non-Destructive On-Line Detection of Potato Black-Heart Disease and Starch Content Based on Visible/Near Infrared Diffuse Transmission Spectroscopy // Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy Spectr. Anal. 2020. V. 40. No. 6. P. 1909—1915. doi: 10.3964/j.issn.1000-0593(2020)06-1909-07
- Gao H., Li X., Xu S., Huang T., Tao H., Li X. Transmission hyperspectral detection method for weight and black heart of potato // Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric. Eng. 2013. V. 29. No. 15. P. 254—261. doi: 10.3969/j.issn.1002-6819.2013.15.034
- Blasco J., Aleixos N., Moltó E. Machine vision system for automatic quality grading of fruit // Biosyst. Eng. 2003. V. 85. No. 4. P. 415—423. doi: 10.1016/S1537-5110(03)00088-6
- Keresztes J. C., Diels E., Goodarzi M., Nguyen-Do-Trong N., Goos P., Nicolai B., Saeys W. Glare based apple sorting and iterative algorithm for bruise region detection using shortwave infrared hyperspectral imaging // Postharvest Biol. Technol. 2017. V. 130. doi: 10.1016/j.postharvbio.2017.04.005
- Barnes M., Duckett T., Cielniak G., Stroud G., Harper G. Visual detection of blemishes in potatoes using minimalist boosted classifiers // J. Food Eng. 2010. V. 98. No. 3. doi: 10.1016/j.jfoodeng.2010.01.010
- Li J., Chen L., Huang W., Wang Q., Zhang B., Tian X., Fan S., Li B. Multispectral detection of skin defects of bi-colored peaches based on vis-NIR hyperspectral imaging // Postharvest Biol. Technol. 2016. V. 112. doi: 10.1016/j.postharvbio.2015.10.007
- Sharma R.R., Reddy S.V.R., Gajanan G. X-Ray Imaging for Quality Detection in Fruits and Vegetables // Sensor-Based Quality Assessment Systems for Fruits and Vegetables. 2020. P. 45—60.
- Chulkov A.O., Nesteruk D.A., Shagdyrov B.I., Vavilov V.P. Erratum to: Method and Equipment for Infrared and Ultrasonic Thermographic Testing of Large-Sized Complex-Shaped Composite Products // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 9. P. 832. doi: 10.1134/S1061830921090114
- Bulanova V. O. Using the Method of Pulsed Heat Source to Control the Moisture of Plant Tissues of Apples // Vestn. Tambovskogo Gos. Teh. Univ. 2020. V. 26. No. 1. P. 026—032. doi: 10.17277/vestnik.2020.01.pp.026-032
- Kozelskaya S. O., Fedotov M. Y. The Development of Comprehensive Technology for Non-Destructive Testing of Implicit Defects and Service Life Assessment of Polymer Composite Materials // Vestn. Tambovskogo Gos. Teh. Univ. 2023. V. 29. No. 2. P. 216—229. doi: 10.17277/vestnik.2023.02.pp.216-229
- Zeng X., Miao Y., Ubaid S., Gao X., Zhuang S. Detection and classification of bruises of pears based on thermal images // Postharvest Biol. Technol. 2020. V. 161. doi: 10.1016/j.postharvbio.2019.111090
- Zeng X., Miao Y., Ubaid S., Gao X., Zhuang S. Detection and classification of bruises of pears based on thermal images // Postharvest Biol. Technol. 2020. V. 161. 111090. doi: 10.1016/j.postharvbio.2019.111090
- Vavilov V. P. Thermal nondestructive testing: traditional approaches and novel trends (review) // Defectoskopiya. 2023. No. 6. P. 38—58. doi: 10.31857/s0130308223060040
- Schmid S., Reinhardt J., Grosse C.U. Spatial and temporal deep learning for defect detection with lock-in thermography // NDT E. Int. 2024. V. 143. P. 103063. doi: 10.1016/j.ndteint.2024.103063
- Mezghani S., Perrin E., Vrabie V., Bodnar J.L., Marthe J., Cauwe B. Evaluation of paint coating thickness variations based on pulsed Infrared thermography laser technique // Infrared Phys. Technol. 2016. V. 76. P. 260—265. doi: 10.1016/j.infrared.2016.03.018
- Moskovchenko A., Vavilov V., Švantner M., Muzika L., Houdková Š. Active IR thermography evaluation of coating thickness by determining apparent thermal effusivity // Materials (Basel). 2020. V. 13. No. 18. P. 4057. doi: 10.3390/ma13184057
- Marinetti S., Robba D., Cernuschi F., Bison P.G., Grinzato E. Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects // Infrared Phys. Technol. 2007. V. 49. No. 3 SPEC. ISS. P. 281—285. doi: 10.1016/j.infrared.2006.06.018
- Franke B., Sohn Y.H., Chen X., Price J.R., Mutasim Z. Monitoring damage evolution in thermal barrier coatings with thermal wave imaging // Surf. Coatings Technol. 2005. V. 200. No. 5—6. P. 1292—1297. doi: 10.1016/j.surfcoat.2005.07.090
- Liu B., Zhang H., Fernandes H., Maldague X. Quantitative evaluation of pulsed thermography, lock-in thermography and vibrothermography on foreign object defect (FOD) in CFRP // Sensors (Switzerland). 2016. V. 16. No. 5. P. 743. doi: 10.3390/s16050743
- Balabanov P., Egorov A., Divin A., Ponomarev S., Yudaev V., Baranov S., Abu Zetoonh. Mathematical Modeling of the Heat Transfer Process in Spherical Objects with Flat, Cylindrical and Spherical Defects // Computation. 2024. V. 12. No. 148. doi: 10.3390/computation12070148
- Divin A.G., Churikov A.A., Filatova A.G., Balabanov P.V., Mochalin S.N. Method and measuring device for monitoring the thermophysical characteristics of heterogeneous materials of plant origin // Vestn. Moscow State Technical University N.E. Bauman. Ser. Instrument engineering. 2018. No. 5 (122). P. 15—25.
- Zhadan V.Z. Thermophysical foundations of storage of succulent vegetable raw materials in food enterprises. Moscow: Food Industry, 1976. 200 p.
Supplementary files

