DETECTION OF WELD DEFECT IMAGES IN RADIOGRAPHS UNDER CONDITIONS OF LIMITED INFORMATION ON CONTROL SENSITIVITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This article is devoted to improving the efficiency of segmentation of radiographic images of welded joints. The article presents an algorithm for defect image segmentation, which is performed in two stages: determination of an array of thresholds for detecting defect image pixels (various detection thresholds for defect image pixels located in areas of digital radiographic images of welded joints with characteristic brightness distribution and background brightness estimation errors) on the background sample based on the criterion of avoiding the detection of “false” defect images; and the actual search for defect images. The experimental results confirm the applicability of the developed algorithm for effective detection of defect images in radiographic images of welded joints without the use of reference sensitivity standards

About the authors

Semen Grigorchenko

Kolomna Institute (branch) of the Moscow Polytechnic University

Author for correspondence.
Email: rent_sig@mail.ru
Russian Federation, 140402 Moscow region, Kolomna, Oktyabrskaya revolyutsii str., 408

Victor Ivanovich Kapustin

JSC SIC TECHNOPROGRESS

Email: kapustin@tpcorp.ru
Russian Federation, 109548 Moscow, Projected passage No. 4062, 6, building 16

References

  1. Gonzalez R., Woods R. Digital image processing: translation from English. Moscow: Tekhnosfera, 2005. 1070 p.
  2. Kosarina E.I., Demidov A.A., Krupnina O.A., Mikhailova N.A., Smirnov A.V., Osyanenko N.V. Non-destructive testing by digital radiography and X-ray computed tomography. Moscow: Publishing house “Spectrum”, 2025. 136 p.
  3. Grudsky A. Ya., Velichko V. Ya. Digitization of radiographic images is not very easy // In the world of NDT. 2011. No. 4 (54). P. 74—76.
  4. X-Vizor — SOFTWARE for digital and computer radiography. Limited Liability Company “Newcom-NDT”: [website]. 2024. Available at: https://newcom-ndt.ru/x-vizor (Accessed on 26.08.2025).
  5. Grigorchenko S.A. Search for radiographic images of defects. Problem statement // Control. Diagnostics. 2012. No. 10. P. 61—64.
  6. Grigorchenko S.A., Efimenko L.A. Automation of computer interpretation of radiation images of welded joints // Defectoskopiya. 2015. No. 1. P. 21—27.
  7. Grigorchenko S.A., Efimenko L.A., Kapustin V.I. Software for the automated decoding of radiographic images // Control. Diagnostics. 2007. No. 12. P. 26—29.
  8. Nazarenko S.Yu., Udod V.A. Application of artificial neural networks in radiation non-destructive testing // Defectoskopiya. 2019. No. 6. P. 53—64.
  9. Liu T., Zheng P., Bao J., Chen H. A state-of-the-art survey of welding radiographic image analysis: Challenges, technologies and applications // Measurement. 2023. V. 214. P. 112821. doi: 10.1016/j.measurement.2023.112821
  10. Say D., Zidi, S., Qaisar S.M., Krichen M. Automated Categorization of Multiclass Welding Defects Using the X-ray Image Augmentation and Convolutional Neural Network // Sensors. 2023. V. 23. P. 6422. https://doi.org/10.3390/s23146422.
  11. Zhao S., Long L., An D., Wang Y, Zhang H., Liang H., Jin S. Design and Realization of Nondestructive Testing Information Management System for Shell Electron Beam Welds // Software Engineering and Applications. 2022. V. 11. No. 5. P. 1005—1016. doi: 10.12677/SEA.2022.115103. https://doi.org/10.12677/sea.2022.115103.
  12. Harrouche S., Nacereddine N. Goumeidane A.B. A Comparative Study of Different CNN Models using Transfer Learning for Weld Defect Classification in Radiographic Testing / Proc. of the 4th International Conference on Electrical, Communication and Computer Engineering (ICECCE). 30—31 December 2023, Dubai, UAE. doi: 10.1109/ICECCE61019.2023.10442057
  13. GOST ISO 17636—2—2017. Non-destructive testing of welded joints. Radiographic testing. Part 2. Methods of X-ray and gamma-ray testing using digital detectors.
  14. GOST ISO 10893—7—2021. Steel pipes. Part 7. Digital radiographic inspection of welds for defect detection.
  15. GOST R ISO 19232—1—2024. Non-destructive testing. Image quality in radiographic images. Part 1. Determination of image quality indicator values using wire-type image quality indicators.
  16. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Digital optical pattern and its dependence on the radiation image at non-destructive testing by method of digital radiography // Aviation Materials and Technologies. 2019. No. 1 (54). P. 37—42. doi: 10.18577/2071-9140-2019-0-1-37-42
  17. Grigorchenko S.A., Kapustin V.I. Classification of flaws in automated radiographic inspection of welded joints // Defectoskopiya. 2009. No. 9. P. 73—87.
  18. Grigorchenko S.A., Kapustin O.E. On the issue of detecting radiographic images of defects in welded joints // Welding and diagnostics. 2023. No. 5. P. 17—19.
  19. Kapustin V.I., Zuev V.M., Ivanov V.I., Dub A.V. Radiographic inspection Information aspects. Moscow: LLC Publishing House “NAUCHTEKHLITIZDAT”, 2010. 368 p.
  20. NP-105-18. Rules for metal control of equipment and pipelines of nuclear power plants during manufacture and installation.
  21. GOST 23055—78. Non-destructive testing. Fusion welding of metals. Welds classification by radiography testing results.
  22. STO Gazprom 2-2.4-917-2014. Instructions for radiographic quality control of welded joints during the construction and repair of field and main pipelines.
  23. Vorobeychikov S.E., Fokin V.A., Udod V.A., Temnik A.K. Evaluation of the effectiveness of two algorithms for segmentation of a digital radiation image of a test object // Defectoskopiya. 2017. No. 2. P. 60—67.
  24. Vorobeychikov S.E., Fokin V.A., Udod V.A., Temnik A.K. Investigation of two pattern recognition algorithms for classifying defects in a control object based on its digital image // Defectoskopiya. 2015. No. 10. P. 54—63.
  25. Grigorchenko S.A. Automated assessment of the quality of welded joints according to the parameters of radiographic images of flaws // Control. Diagnostics. 2009. No. 10. P. 30—36.
  26. Grigorchenko S.A., Ukolov I.A. Определение фона в задаче поиска радиографических изображений дефектов // Pipeline Transport: Theory and Practice. 2012. No. 2 (30). P. 14—17.
  27. Bardin B.V. Research of the possibilities of median filtering in digital processing of images of sets of local biological objects // Scientific Instrumentation. 2011. V. 21. No. 2. P. 120—125.
  28. Bardin B.V. A fast algorithm for median filtering // Scientific Instrumentation. 2011. V. 21. No. 3. P. 135—139.
  29. Verbeek P.W., Vrooman H.A., Van Vliet L.J. Low-level image processing by max-min filters. // Signal Processing. 1988. V. 15 (3). P. 249—258. doi: 10.1016/0165-1684(88)90015-1. https://doi.org/10.1016/0165-1684(88)90015-1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).