IDENTIFICATION AND DETECTION OF DEBONDING AT STEEL PLATE-CONCRETE INTERFACE BASED ON REFERENCE-FREE LAMB WAVE
- Authors: Gao W.1, Su C.1, Wang Y.2, Zhao X.1
-
Affiliations:
- Shandong Jianzhu University
- Nanjing Forestry University
- Issue: No 8 (2025)
- Pages: 42-56
- Section: Acoustic methods
- URL: https://ogarev-online.ru/0130-3082/article/view/304064
- DOI: https://doi.org/10.31857/S0130308225080049
- ID: 304064
Cite item
Abstract
Cracks, spalling, cavities and other damages occur in the process of long-term service of concrete, so that the bearing capacity of the building decreases, which needs to be reinforced by the adhesive steel plate reinforcement method. However, debonding phenomenon can occur at the interface between steel plate and concrete, which affects the overall stiffness and load carrying capacity of the structure, so debonding detection at the steel-concrete interface is particularly important. In this paper, a reference-free Lamb wave-based identification detection method for steel plate-concrete debonding is proposed, in which the Hilbert energy spectrum is used as a damage factor. The method does not require a pre-set reference signal, which is obtained by comparing the debonding signals. Firstly, the simulation is carried out by finite element software, the circular sensor array is arranged on the surface of the steel plate, and each sensor acts as excitation and reception, the Hilbert energy spectrum of the signal is obtained, the damage coefficient is calculated, the probabilistic imaging algorithm is utilized to realize the localization of the debonding position and the imaging, and finally the simulation is verified by experiments. The results show the feasibility of the method in debonding identification detection
About the authors
Weichao Gao
Shandong Jianzhu University
Email: gaoweichao2023@163.com
China, 250101 Jinan, China
Chenhui Su
Shandong Jianzhu University
Email: suchenhui2010@163.com
China, 250101 Jinan, China
Yina Wang
Nanjing Forestry University
Email: wangyina@njfu.edu.cn
210037 Nanjing, China
Xiaomei Zhao
Shandong Jianzhu University
Author for correspondence.
Email: zhaoxiaomei20@sdjzu.edu.cn
China, 250101 Jinan, China
References
- Onaizi A.M., Amran M., Tang W. et al. Radiation-shielding concrete: A review of materials, performance, and the impact of radiation on concrete properties // Journal of Building Engineering. 2024. V. 110800.
- Yin Y., Ren Q., Lei S. et al. Mesoscopic crack pattern fractal dimension-based concrete damage identification // Engineering Fracture Mechanics. 2024. V. 296. P. 109829.
- Li B., Chen Z., Wang S. et al. A review on the damage behavior and constitutive model of fiber reinforced concrete at ambient temperature // Construction and Building Materials. 2024. V. 412. P. 134919.
- Zhang J., Peng L., Wen S. et al. A Review on Concrete Structural Properties and Damage Evolution Monitoring Techniques // Sensors. 2024. V. 24 (2). P. 620.
- Xie M., Hoa S.V., Xiao X.R. Bonding steel reinforced concrete with composites // Journal of reinforced plastics and composites. 1995. V. 14 (9). P. 949—964.
- Abdallah S., Fan M., Rees D.W.A. Bonding mechanisms and strength of steel fiber–reinforced cementitious composites: Overview // Journal of Materials in Civil Engineering. 2018. V. 30 (3). P. 04018001.
- Kucharska M., Jaskowska-Lemanska J. Properties of a bond between the steel reinforcement and the new generation concretes — a review / IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019. V. 603 (4). P. 042057.
- Fedin K.V., Marilov O.K. Detection of hidden defects in composite material using the standing waves method // Russian Journal of Nondestructive Testing. 2024. V. 60. No. 4. P. 368—377.
- Minghui W., Hongjun C., Aihua D. et al. A new method for wellhead device defect identification with ultrasonic signals // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 9. P. 964—976.
- Vasil’ev A.V., Biryukov D.Y., Zatsepin A.F. Ultrasonic testing of butt joints in electric steel plates using Lamb waves // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 1. P. 11—21.
- Luo K., Chen L., Liang W. Numerical simulation of carbon fiber reinforced polymer composite delamination damage identification using Lamb wave and filtered back-projection method // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 10. P. 917—925.
- Wu C., Wei Q., Zhu Y. et al. Fatigue Microcracks Detection and Assessment in High-Strength Marine Steel Using Nonlinear Ultrasonic Waves: Experimental and Numerical Investigation // Russian Journal of Nondestructive Testing. 2024. V. 60. No. 7. P. 726—739.
- Jiang Y., Han L., Wang R. et al. Quantitative detection of internal flaws of action rod based on ultrasonic technology // Russian Journal of Nondestructive Testing. 2023. V. 59 No. 2. P. 171—181.
- Moravvej M., El-Badry M. Reference-Free Vibration-Based Damage Identification Techniques for Bridge Structural Health Monitoring — A Critical Review and Perspective // Sensors. 2024. V. 24 (3). P. 876.
- Alem B., Abedian A., Nasrollahi-Nasab K. Reference-free damage identification in plate-like structures using lamb-wave propagation with embedded piezoelectric sensors // Journal of Aerospace Engineering. 2016. V. 29 (6). P. 04016062.
- Zhang L., Cheng X., Wu G. et al. Reference-free damage identification method for highway continuous girder bridges based on long-gauge fibre Bragg grating strain sensors // Measurement. 2022. V. 195. P. 111064.
- Chen H., Ren Y., Gan S. et al. Interfacial debonding detection for steel-concrete composite structures part I: Benchmark test and signal calibration of contact and non-contact measurement / Structures. Elsevier. 2024. V. 62. P. 106123.
- Guo C., Xu C., Xiao D. et al. Ultrasonic resonance evaluation method for deep interfacial debonding defects of multilayer adhesive bonded materials // Reviews on Advanced Materials Science. 2024. V. 63 (1). P. 20230172.
- Bu C.W., Zhao B., Liu T. et al. Infrared thermal imaging detection of debonding defects in carbon fiber reinforced polymer based on pulsed thermal wave excitation // Thermal Science. 2020. V. 24 (6 Part B). P. 3887—3892.
- Li Y., Liu X., Chen G. et al. Study on interfacial debonding stress and damage mechanisms of C/SiC composites using acoustic emission // Ceramics International. 2021. V. 47 (4). P. 4512—4520.
- Lai G.D., Sang L.P., Bian Y.L. et al. Interfacial debonding and cracking in a solid propellant composite under uniaxial tension: An in situ synchrotron X-ray tomography study // Composites Science and Technology. 2024. P. 110743.
- Alleyne D.N., Cawley P. The interaction of Lamb waves with defects // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1992. V. 39 (3). P. 381—397.
- Croxford A.J., Wilcox P.D., Drinkwater B.W., Konstantinidis G. Strategies for guided-wave structural health monitoring. Proceedings of the Royal Society A: Mathematical // Physical and Engineering Sciences. 2007. V. 463 (2087). P. 2961—2981.
- Michaels J.E., Lee S.J., Michaels T.E. Enhanced differential methods for guided wave phased array imaging // Journal of Nondestructive Evaluation. 2011.V. 30 (1). P. 20—30.
- Li L., Wang F., Shang F. et al. Energy spectrum analysis of blast waves based on an improved Hilbert—Huang transform // Shock Waves. 2017. V. 27. P. 487—494.
- Olhede S., Walden A.T. The Hilbert spectrum via wavelet projections // Proceedings of the royal society of London. Series A: mathematical, physical and engineering sciences. 2004. V. 460 (2044). P. 955—975.
- Su Z., Ye L., Su Z. et al. Fundamentals and analysis of lamb waves // Identification of Damage Using Lamb Waves: From Fundamentals to Applications. 2009. P. 15—58.
- Tian Z., Yu L. Lamb wave frequency—wavenumber analysis and decomposition // Journal of Intelligent Material Systems and Structures. 2014. V. 25 (9). P. 1107—1123.
- Alleyne D.N., Cawley P. Optimization of Lamb wave inspection techniques // Ndt & E International. 1992. V. 25 (1). P. 11—22.
- Kessler S.S., Spearing S.M., Soutis C. Damage detection in composite materials using Lamb wave methods // Smart materials and structures. 2002. V. 11 (2). P. 269.
- Yeum C.M., Sohn H., Lim H.J. et al. Reference-free delamination detection using Lamb waves // Structural Control and Health Monitoring. 2014. V. 21 (5). P. 675—684.
- Chen S., Wang M., Wang Y. Feature extraction of pulse diagnosis signal based on Hilbert yellow transform / Optics in Health Care and Biomedical Optics XI. SPIE. 2021. V. 11900. P. 138—146.
- Cheng J., Yu D., Tang J. et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis // Mechanism and Machine Theory. 2008. V. 43 (6). P. 712—723.
- Zhao X., Royer R.L., Owens S.E. et al. Ultrasonic Lamb wave tomography in structural health monitoring // Smart Materials and Structures. 2011. V. 20 (10). P. 105002.
- Leonard K.R., Malyarenko E.V., Hinders M.K. Ultrasonic Lamb wave tomography // Inverse problems. 2002. V. 18 (6). P. 1795.
- Zhang W., Su C., Zhang Y. et al. Locating and imaging composite damage based on frequency spectrum detection of lamb waves // Frontiers in Physics. 2022. V. 10. P. 1073206.
Supplementary files
