🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Hydrodynamic effects at the entry of tidal waves into estuaries


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phenomenon of an increase in tidal wave height in cone-shaped estuaries is studied. The effect of estuary narrowing in the direction of tidal wave propagation (the hydrodynamic effect of confusor) is among the factors amplifying the tide. An opposite effect of turbulent friction, whose manifestation increases with decreasing bay’s depth, conversely, reduces tide amplitude because of the dissipation of tidal wave energy. Stokes diffusion layer also plays a significant role in the formation of wave transformation regime. In an estuary with a median depth, which is much greater than the Stokes layer thickness, the confusor effect is stronger and tide amplitude increases at estuary head. At depths lesser than Stokes layer thickness, the turbulent friction dominates over the confusor effect and the amplitude of tidal wave decreases at the head of the estuary. The depths of the order of Stokes layer thickness cause an interesting intermediate phenomenon—at the entrance into the estuary, first the effect of friction manifests itself, resulting in a decrease in the amplitude of tidal wave, but later, the effect of confusor starts dominating, and the amplitude of tidal wave again increases toward estuary head. When the period of tidal wave coincides with seiche period, a resonance enhancement of seiche oscillations takes place in the estuary.

About the authors

V. N. Zyryanov

Water Problems Institute

Author for correspondence.
Email: zyryanov@iwp.ru
Russian Federation, ul. Gubkina 3, Moscow, 119333

M. K. Chebanova

Water Problems Institute

Email: zyryanov@iwp.ru
Russian Federation, ul. Gubkina 3, Moscow, 119333

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.