Binary Classification of CNS and PNS Drugs


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Stable classification predictive models of 626 drugs acting on the central (CNS) and peripheral (PNS) nervous systems were constructed based on linear discriminant analysis, logistic regression, random forest, and support vector machine methods with physicochemical descriptors characterizing the steric factors, electrostatic interactions, and H-bonding features. Internal cross-validations demonstrated that these models possessed satisfactory statistical properties.

Негізгі сөздер

Авторлар туралы

D. Polianchik

Department of Computer-Aided Molecular Design, Institute of Physiologically Active Substances, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: danielpolian@yahoo.com
Ресей, Chernogolovka, Moscow Region, 142432

V. Grigor’ev

Department of Computer-Aided Molecular Design, Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: danielpolian@yahoo.com
Ресей, Chernogolovka, Moscow Region, 142432

G. Sandakov

Department of Computer-Aided Molecular Design, Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: danielpolian@yahoo.com
Ресей, Chernogolovka, Moscow Region, 142432

A. Yarkov

Department of Computer-Aided Molecular Design, Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: danielpolian@yahoo.com
Ресей, Chernogolovka, Moscow Region, 142432

S. Bachurin

Department of Biomedicinal Chemistry, Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: danielpolian@yahoo.com
Ресей, Chernogolovka, Moscow Region, 142432

O. Raevskii

Department of Computer-Aided Molecular Design, Institute of Physiologically Active Substances, Russian Academy of Sciences

Email: danielpolian@yahoo.com
Ресей, Chernogolovka, Moscow Region, 142432

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2017