Evoked responses to the cyclic sound motion
- Authors: Shestopalova L.B.1, Petropavlovskaia Е.А.1, Letyagin P.I.1, Salikova D.A.1
-
Affiliations:
- Pavlov Institute of Physiology, RAS
- Issue: Vol 75, No 3 (2025)
- Pages: 327–340
- Section: ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ (КОГНИТИВНОЙ) ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА
- URL: https://ogarev-online.ru/0044-4677/article/view/294592
- DOI: https://doi.org/10.31857/S0044467725030057
- ID: 294592
Cite item
Abstract
This work aims to study the event-related potentials (ERPs) during the cyclic movement of sound stimuli and to choose the optimal model for neuronal coding of azimuthal motion. The ERPs elicited by the cyclic motion of sound stimuli were investigated under conditions of dichotic stimulation. Stepwise or linear motion patterns were created by cyclic changes in the interaural time difference (ITD), which changed by 800 μs, and then returned to its initial value. Statistically significant ERPs were evoked by the motion onset and by the repeated changes of direction (sound turns) only in the case of a stepwise ITD pattern. The amplitude of the responses consistently depended on the angular position of the turning points relative to the head midline. These results support a two-channel model for encoding spatial information in the auditory cortex. ERPs evoked by motion offset indicated that spatial attention and sensory memory were involved in the preconscious perception of cyclic motion.
Full Text

About the authors
L. B. Shestopalova
Pavlov Institute of Physiology, RAS
Author for correspondence.
Email: shestopalovalb@infran.ru
Russian Federation, Saint-Petersburg
Е. А. Petropavlovskaia
Pavlov Institute of Physiology, RAS
Email: shestopalovalb@infran.ru
Russian Federation, Saint-Petersburg
P. I. Letyagin
Pavlov Institute of Physiology, RAS
Email: shestopalovalb@infran.ru
Russian Federation, Saint-Petersburg
D. A. Salikova
Pavlov Institute of Physiology, RAS
Email: shestopalovalb@infran.ru
Russian Federation, Saint-Petersburg
References
- Семенова В.В., Шестопалова Л.Б., Петропавловская Е.А., Никитин Н.И. Константы восприятия отсроченного движения звуковых стимулов. Успехи физиологических наук. 2020. 51 (2): 55–67.
- Шестопалова Л.Б., Петропавловская Е.А. Негативность рассогласования и пространственный слух. Успехи физиологических наук. 2019. 50 (3): 14.
- Шестопалова Л.Б., Саликова Д.А., Петропавловская Е.А. Слуховое последействие: влияние неподвижного адаптера на восприятие движущегося стимула. ЖВНД. 2023. 73 (2): 256–270.
- Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Летягин П.И. Воспринимаемые траектории циклического движения звуковых образов. Сенсорные системы. 2024a. 38 (3): 51–62.
- Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А., Летягин П.И. Локализация точек поворота при ритмическом движении звукового образа. Физиология человека. 2024b. 50 (5): 3–12. doi: 10.31857/S0131164624050015.
- Шестопалова Л.Б., Семенова В.В., Петропавловская Е.А. Вызванный ответ мозга человека на начало движения звука (motion-onset response). Успехи физиологических наук. 2024c. 55 (3): 22–44.
- Akeroyd M.A. A binaural beat constructed from a noise. J. Acoust. Soc. Am. 2010. 128: 3301.
- Basu S., Banerjee B. Potential of binaural beats intervention for improving memory and attention: insights from meta-analysis and systematic review. Psychol. Res. 2022. https://doi.org/10.1007/s00426-022-01706-7.
- Beauchene C., Abaid N., Moran R., Diana R.A., Leonessa A. The effect of binaural beats on visuospatial working memory and cortical connectivity. PLoS ONE. 2016. 11 (11): e0166630.
- Beauchene C., Abaid N., Moran R., Diana R.A., Leonessa A. The effect of binaural beats on verbal working memory and cortical connectivity. J. Neural Engineering. 2017. 14 (2): 026014. https://doi.org/10.1088/1741-2552/aa5d67.
- Briley P.M., Goman A.M., Summerfield A.Q. Physiological evidence for a midline spatial channel in human auditory cortex. J. Assoc. Res. Otolaryngol. 2016. 17 (4): 331-40.
- Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for opponent process analysis of sound source location in humans. J. Assoc. Res. Otolaryngol. 2013. 14: 83–101.
- Briley P.M., Summerfield A.Q. Age-related deterioration of the representation of space in human auditory cortex. Neurobiol. Aging. 2014. 35: 633–644.
- Carlile S., Leung J. The perception of auditory motion. Trends Hear. 2016. 20: 1–19.
- Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007. 34 (4): 1443–1449.
- Dingle R.N, Hall S.E, Phillips D.P. A midline azimuthal channel in human spatial hearing. Hear. Res. 2010. 268: 67–74.
- Dingle R.N, Hall S.E, Phillips D.P. The three-channel model of sound localization mechanisms: interaural level differences. J. Acoust. Soc. Am. 2012. 131: 4023–4029.
- Féron F.X., Frissen I., Boissinot, J. Guastavino C. Upper limits of auditory rotational motion perception. J. Acoust. Soc. Am. 2010. 128: 3703–3714.
- Gao X., Cao H., Ming D., Qi H., Wang X., Wang X., Chen R., Zhou P. Analysis of EEG activity in response to binaural beats with different frequencies. Int. J. Psychophysiol. 2014. 94 (3): 399–406.
- Garcia-Argibay M., Santed M.A., Reales J.M. Efficacy of binaural auditory beats in cognition, anxiety, and pain perception: a meta-analysis. Psychol. Res. 2019. 83 (2): 357–372.
- Getzmann S. Auditory motion perception: onset position and motion direction are encoded in discrete processing stages. Eur. J. Neurosci. 2011. 33 (7): 1339–50.
- Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes. Neuropsychologia. 2009. 47 (12): 2625–2633.
- Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion. Hearing Research. 2008. 246: 44–51.
- Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion. Hear. Res. 2010. 259 (1-2): 44–54.
- Grantham D.W., Wigцццhtman F.L. Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 1978. 63: 511.
- Grantham D.W., Wightman F.L. Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 1978. 63 (2): 511–523.
- Ioannou C.I., Pereda E., Lindsen J.P., Bhattacharya J. Electrical brain responses to an auditory illusion and the impact of musical expertise. PLoS ONE. 2015. 10 (6): e0129486.
- Joris Х., Smith P.H., Yin T.C. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron. 1998. 21: 1235–1238.
- Licklider J.C.R., Webster J.C., Hedlun J.M. On the frequency limits of binaural beats. J. Acoust. Soc. Am. 1950. 22: 468–473.
- López-Caballero F., Escera C. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal. Front. Hum. Neurosci. 2017. 11: 557.
- Lüddemann H., Kollmeier B., Riedel H. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time. Hear. Res. 2016. 332: 170–187.
- Lüddemann H., Riedel H., Kollmeier B. Asymmetries in electrophysiological and psychophysical sensitivity to interaural correlation steps. Hear. Res. 2009. 256: 39–57.
- Magezi D.A., Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J. Neurophysiol. 2010. 104: 1997–2007.
- McLaughlin S.A., Higgins N.C., Stecker G.C. Tuning to binaural cues in human auditory cortex. J. Assoc. Res. Otolaryngol. 2016. 17: 37–53.
- Perrott D.R., Musicant A.D. Minimum audible movement angle: Binaural localization of moving sound sources. J. Acoust. Soc. Am. 1977. 62 (6): 1463.
- Perrott D.R., Musicant A.D. Rotating tones and binaural beats. J. Acoust. Soc. Am. 1977. 61 (5): 1288–1292.
- Phillips D.P., Hall S.E. Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hearing Research. 2005. 202: 188–199.
- Pratt H., Starr A., Michalewski H.J., Dimitrijevic A., Bleich N., Mittelman N. Cortical evoked potentials to an auditory illusion: binaural beats. //Clin. Neurophysiol. 2009. 120: 1514–1524.
- Salminen N.H., Tiitinen H., May P.J.C. Auditory spatial processing in the human cortex. Neuroscientist. 2012. 18 (6): 602–12.
- Salminen N.H., May P.J.C., Alku P., Tiitinen H. A population rate code of auditory space in the human cortex. PLoS One. 2009. 4: e7600.
- Senna I., Parise C.V., Ernst M.O. Hearing in slow motion: Humans underestimate the speed of moving sounds. Sci. Rep. 2015. 5: 14054.
- Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception. Hear. Res. 2024. 441: 108922.
- Trapeau R., Schönwiesner M. Adaptation to shifted interaural time differences changes encoding of sound location in human auditory cortex. NeuroImage. 2015. 118: 26–38.
- Ungan P., Yagcioglu S., Ayik E. Event-related potentials to single-cycle binaural beats and diotic amplitude modulation of a tone. Exp. Brain Res. 2019a. 237: 1931–1945.
- Ungan P., Yagcioglu S., Ayik E. Event-related potentials to single-cycle binaural beats of a pure tone, a click train, and a noise. Exp. Brain Res. 2019b. 237 (11): 2811–828.
Supplementary files
