FAST CALCULATION OF INTEGRAL CONVOLUTION TYPE OPERATORS IN OPTION ESTIMATION PROBLEMS IN LEVY MODELS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An approximate algorithm for calculating integral operators of the convolution type that arise when evaluating barrier options in Levy models by the Wiener–Hopf method is constructed. Additionally, the question of the possibility of applying machine learning methods (artificial neural networks) to the approximation of a special type of integrals, which are a key element in the construction of approximate formulas for the Wiener–Hopf integral operators under consideration, is investigated. The main idea is to decompose the price function into a Fourier series and transform the integration contour for each term of the Fourier series. As a result, we obtain a set of typical integrals that depend on Wiener–Hopf factors, but do not depend on the price function, while the most computationally expensive part of the numerical method is reduced to calculating these integrals. Since they need to be calculated only once, and not at each iteration, as was the case in standard implementations of the Wiener–Hopf method, this will significantly speed up calculations. Moreover, a neural network can be trained to calculate typical integrals. The proposed approach is especially effective for spectrally one-sided Levy processes, for which explicit Wiener–Hopf factorization formulas are known. In this case, we obtain computationally convenient formulas by integrating along the section. The main advantage of including neural networks in a computational scheme is the ability to perform calculations on an uneven grid. Such a hybrid numerical method will be able to successfully compete with classical methods of computing convolutions in similar tasks using the fastFourier transform. Computational experiments show that neural networks with one hidden layer of 20 neurons are able to effectively cope with the tasks of approximating the auxiliary integrals under consideration.

作者简介

A. Grechko

Yeremenko 58/11, Research and production company “InWise Systems” LLC

Email: koe@sfedu.ru
Rostov-on-Don, Russia

O. Kudryavtsev

Yeremenko 58/11, Research and production company “InWise Systems” LLC; Rostov branch of the Russian Customs Academy

Email: alex@itparadigma.ru
Rostov-on-Don, Russia; Rostov-on-Don, Russia

参考

  1. Кудрявцев О.Е. Эффективный численный метод решения специального класса интегро-дифференциальных уравнений, связанных с моделями Леви // Матем. моделирование. 2011. Т. 23. № 5. С. 95-104.
  2. Кудрявцев О.Е. Приближенная факторизация Винера—Хопфа и метод Монте-Карло для процессов Леви // Теория вероятностей и ее применения. 2019. Т 64. № 2. С. 228—257.
  3. Кудрявцев О.Е., Гречко А.С., Мамедов И.Э. Метод Монте-Карло для вычисления цен опционов типа lookback в моделях Леви // Теория вероятностей и ее применения. 2024. Т. 69. № 2. С. 305—334.
  4. Ширяев А.Н. Основы стохастической финансовой математики. Факты. Модели. М.: Фазис, 1998. Т. 1.440 с.
  5. Boyarchenko S.I., Levendorskii S.Z. Non-Gaussian Merton-Black-Scholes theory. New Jercey, London, Singapore, Hong Kong: World Sci., 2002, 420 p.
  6. Boyarchenko M., Levendorskii S. Valuation of continuously monitored double barrier options and related securities // Math Financ. (2011) doi: 10.1111/j.1467-9965.2010.00469.x
  7. Dixon M.F., Halperin I., Bilokon P. Machine Learning in Finance: From Theory to Practice. Germany: Springer Inter. Publ., 2020.
  8. CarrP, Geman H., Madan D.B., YorM. The fine structure of asset returns: an empirical investigation //J. Business. 2002. V. 75. № 2. P. 305-332.
  9. Cont R., Voltchkova E. A finite difference scheme for option pricing in jump diffusion and exponential Levy models // SIAM J. Numer. Analys. 2005. V 43. № 4. P. 1596-1626.
  10. Cont R., Tankov P. Financial modelling with jump processes, 2nd Ed., Chapman & Hall/CRC Press, 2008. 606 p.
  11. Cybenko G. Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals and Systems. 1989. 2. Р. 303-314.
  12. Goudeniege L., MolentA., Zanette A. Machine learning for pricing American options in high-dimensional Markovian and non-Markovian models // Quantitative Finance. 2020. V. 20. № 4. P. 573-591.
  13. Hornik K. Approximation capabilities of multilayer feedforward networks // Neural Networks. 1991. V 4. № 2. P. 251-257.
  14. Huh J. Pricing Options with Exponential Levy Neural Network // Expert Systems with Appl. 2019. V. 127. doi: 10.1016/j.eswa.2019.03.008
  15. Itkin A. Pricing Derivatives Under Levy Models: book, Birkhauser, 2017. 308 p.
  16. Kirkby J.L. Robust barrier option pricing by frame projection under exponential Levy dynamics // Appl. Math. Finance. 2017. V 24. № 4. P. 337-386.
  17. Kudryavtsev O. Levendorskii S. Fast and accurate pricing of barrier options under Levy processes // Finance Stoch. 2009. V. 13. №4. P. 531-562.
  18. Kudryavtsev O., Luzhetskaya P. The Wiener-Hopf Factorization for Pricing Options Made Easy // Engineer. Lett. 2020. V. 28. № 4. P. 1310-1317.
  19. Kudryavtsev O., Zanette A. Applications of Levy Processes // Math. Res. Developments, NY: Nova Science Publishers, Incorporated, 2021. ISBN: 978-1-53619-525 -5
  20. Kudryavtsev O. A simple Wiener-Hopf factorization approach for pricing double-barrier options. In: Karapetyants A.N., Pavlov I.V., Shiryaev A.N. (Ed.) Operator Theory and Harmonic Analysis. OTHA2020. Springer Proceedings in Mathematics & Statistics, Springer, Cham, 2021. V 358, pp. 273-291.
  21. Kudryavtsev O. A simplified Wiener-Hopf factorization method for pricing double barrier options under Levy processes // Comput. Manag. Sci. 2024. V 21. P 37.
  22. Kudryavtsev O., Danilova N. Applications of artificial neural networks to simulating Levy processes //J. Math. Sci. 2023. V. 271. № 4. P. 421-433.
  23. Kyprianou A.E. Introductory Lectures on Fluctuations of Levy Processes with Applications, 2006, Springer, Berlin.
  24. Phelan E., Marazzina D., Fusai G., and Germano G. Fluctuation identities with continuous monitoring and their application to price barrier options // Europ. J. Operat. Res. 2018. V 271. № 1. P 210-223.
  25. Sato K. Levy processes and infinitely divisible distributions. Cambridge: Cambridge Univ. Press, 1999. 486 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».