On the Accuracy of Shock-Capturing Schemes Calculating Gas-Dynamic Shock Waves

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A comparative experimental accuracy study of three shock-capturing schemes (the second-order CABARET, third-order Rusanov, and fifth-order in space third-order in time A-WENO schemes) is carried out by numerically solving a Cauchy problem with smooth periodic initial data for the Euler equations of gas dynamics. In the studied example, the solution breaks down and shock waves emerge. It is shown that the CABARET and A-WENO schemes, which are constructed using nonlinear limiters as a stabilization mechanism, have approximately the same accuracy in the areas of shock wave influence, while the nonmonotone Rusanov scheme has significantly higher accuracy in these areas despite producing noticeable nonphysical oscillations in the immediate vicinities of shock waves. At the same time, the combined scheme obtained based on the Rusanov and CABARET schemes localizes shock wave fronts, which are captured in a non-oscillatory manner, and preserves higher accuracy in the areas of the shock influence.

作者简介

V. Kolotilov

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: kolotilov1992@gmail.com
630090, Novosibirsk, Russia

A. Kurganov

Department of Mathematics, Southern University of Science and Technology; Shenzhen International Center for Mathematics and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology

Email: alexander@sustech.edu.cn
518005, Shenzhen, China; 518005, Shenzhen, China

V. Ostapenko

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: ostapenko_vv@ngs.ru
630090, Novosibirsk, Russia

N. Khandeeva

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: nzyuzina1992@gmail.com
630090, Novosibirsk, Russia

S. Chu

Department of Mathematics, Southern University of Science and Technology

编辑信件的主要联系方式.
Email: chuss2019@mail.sustech.edu.cn
518005, Shenzhen, China

参考

  1. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сб. 1959. Т. 47. № 3. С. 271–306.
  2. Cockburn B. An introduction to the discontinuous Galerkin method for convection – dominated problems // Lect. Notes Math. 1998. V. 1697. P. 150–268. https://doi.org/10.1007/BFb0096353
  3. Cockburn B., Shu C.-W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems // J. Sci. Comput. 2001. V. 16. № 3. P. 173–261. http://doi.org/10.1023/A:1012873910884
  4. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.
  5. LeVeque R.J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002. https://doi.org/10.1007/b79761
  6. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin: Springer-Verlag, 2009. https://doi.org/10.1007/b79761
  7. Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А. Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов // М.: Изд. МГУ, 2013.
  8. Hesthaven J.S. Numerical methods for conservation laws in V. 18 of Computational Science and Engineering. Philadelphia: SIAM, 2018. https://doi.org/10.1137/1.9781611975109
  9. Shu C.W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes // Acta Numer. 2020. V. 29. P. 701–762. https://doi.org/10.1017/S0962492920000057
  10. Van Leer B. Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s m-ethod // J. Comput. Phys. 1979. V. 32. № 1. P. 101–136. https://doi.org/10.1016/0021-9991(79)90145-1
  11. Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. P. 357–393. https://doi.org/10.1016/0021-9991(83)90136-5
  12. Nessyahu H., Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws // J. Comput. Phys. 1990. V. 87. № 2. P. 408–463. https://doi.org/10.1016/0021-9991(90)90260-8
  13. Liu X.-D., Osher T., Chan T. Weighted essentially non-oscillatory schemes // J. Comput. Phys. 1994. V. 115. № 1. P. 200–212. https://doi.org/10.1006/jcph.1994.1187
  14. Karabasov S.A., Goloviznin V.M. Compact accurately boundary-adjusting high-resolution technique for fluid dynamics // J. Comput. Phys. 2009. V. 228. P. 7426–7451. https://doi.org/10.1016/j.jcp.2009.06.037
  15. Стокер Дж.Дж. Волны на воде. Математическая теория и приложения. М.: Изд-во иностр. лит., 1959.
  16. Остапенко В.В. О построении разностных схем повышенной точности для сквозного расчета нестационарных ударных волн // Ж. вычисл. матем. и матем. физ. 2000. Т. 40. № 12. С. 1857–1874.
  17. Ковыркина О.А., Остапенко В.В. О построении комбинированных разностных схем повышенной точности // Докл. АН. 2018. Т. 478. № 5. С. 517–522. https://doi.org/10.1134/S1064562418010246
  18. Зюзина Н.А., Ковыркина О.А., Остапенко В.В. Монотонная разностная схема, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2018. Т. 482. № 6. С. 639–643. https://doi.org/10.1134/S1064562418060315
  19. Ладонкина М.Е., Неклюдова О.А., Остапенко В.В., Тишкин В.Ф. Комбинированная схема разрывного метода Галеркина, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2019. Т. 489. № 2. С. 119–124. https://doi.org/10.1134/S106456241906005X
  20. Русанов В.В. Разностные схемы третьего порядка точности для сквозного счета разрывных решений // Докл. АН СССР. 1968. Т. 180. № 6. С. 1303–1305.
  21. Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений. М.: Наука, 1978.
  22. Lax P.D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Philadelphia: Soc. Industr. Appl. Math. 1972. 48 p.
  23. Остапенко В.В., Колотилов В.А. Применение схемы CABARET для расчета разрывных решений гиперболической системы законов сохранения // Докл. АН. Матем., информ., проц. управл. 2021. Т. 501. С. 62–66. https://doi.org/10.1134/S1064562421060120
  24. Wang B.-S., Don W.S., Kurganov A., Liu Y. Fifth-order A-WENO schemes based on the adaptive diffusion central-upwind Rankine-Hugoniot fluxes // Commun. Appl. Math. Comput. 2021. https://doi.org/10.1007/s42967-021-00161-2
  25. Karni S., Kurganov A., Petrova G. A smoothness indicator for adaptive algorithms for hyperbolic systems // J. Comput. Phys. 2002. V. 178. P. 323–341. https://doi.org/10.1006/jcph.2002.7024

补充文件

附件文件
动作
1. JATS XML
2.

下载 (102KB)
3.

下载 (94KB)
4.

下载 (105KB)
5.

下载 (100KB)

版权所有 © В.А. Колотилов, А.А. Курганов, В.В. Остапенко, Н.А. Хандеева, Ш. Чу, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».