Calculation of a Strong Resonance Condition in a Hamiltonian System

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for symbolic computation of a condition of existence of a third- and fourth-order resonance for investigations of formal stability of an equilibrium state of a multiparameter Hamiltonian system with three degrees of freedom in the case of general position is proposed. This condition is formulated in the form of zeros of a quasi-homogeneous polynomial of the coefficients of the characteristic polynomial of the linear part of the Hamiltonian system. Computer algebra (Gröbner bases of elimination ideals) and power geometry (power transformations) are used to represent this condition for various resonance vectors in the form of rational algebraic curves. Given a linear approximation of the characteristic polynomial in the space of its coefficients, these curves are used to obtain a description of a partition of the stability domain into parts in which there are no strong resonances. An  example of a description of resonance sets for a two-parameter pendulum-type system is given. All computations are carried out in the computer algebra system Maple.

作者简介

A. Batkhin

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: batkhin@gmail.com
125047, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

Z. Khaidarov

Samarkand State University

编辑信件的主要联系方式.
Email: zafarxx@gmail.com
140104, Samarcand, Uzbekistan

参考

  1. Брюно А. О типах устойчивости в системах Гамильтона // Препринты ИПМ им. М.В. Келдыша. 2020. № 21. С. 1–24.
  2. Зигель К., Мозер Ю. Лекции по небесной механике. Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2001. 384 с.
  3. Маркеев А.П. Точки либрации в небесной механике и космодинамике. М.: Наука, 1978. 352 с.
  4. Moser J.K. New aspects in the theory of stability of Hamiltonian Systems // Comm. Pure Appl. Math. 1958. V. 11. № 1. P. 81–114.
  5. Батхин А.Б., Хайдаров З.Х. Сильные резонансы в нелинейной системе Гамильтона // Препринты ИПМ им. М.В. Келдыша. 2022. № 59. С. 1–28.
  6. Батхин А.Б., Брюно А.Д., Варин В.П. Множества устойчивости многопараметрических гамильтоновых систем // Приклад. матем. и мех. 2012. Т. 76. № 1. С. 80–133.
  7. Калинина Е.А., Утешев А.Ю. Теория исключения: Учеб. пособие. СПб: Изд-во НИИ химии СПбГУ, 2002. 72 с.
  8. Basu S., Pollack R., Roy M.-F. Algorithms in Real Algebraic Geometry. Algorithms and Computations in Mathematics 10. Berlin–Heidelberg–New York: Springer-Verlag, 2006. ix p.
  9. Брюно А.Д. Аналитическая форма дифференциальных уравнений (II) // Тр. ММО. 1972. Т. 26. С. 199–239.
  10. Биркгоф Д.Д. Динамические системы. Ижевск: Изд. дом “Удмуртский университет”, 1999. 408 с.
  11. Брюно А.Д. Ограниченная задача трех тел: Плоские периодические орбиты. М.: Наука, 1990. 296 с.
  12. Bruno A.D., Batkhin A.B. Survey of eight modern methods of Hamiltonian mechanics // Axioms. 2021. V. 10. № 4. https://www.mdpi.com/2075-1680/10/4/293.
  13. Брюно А.Д. О формальной устойчивости систем Гамильтона // Матем. заметки. 1967. Т. 1. № 3. С. 325–330.
  14. Журавлев В.Ф., Петров А.Г., Шундерюк М.М. Избранные задачи гамильтоновой механики. М.: -ЛЕНАНД, 2015. 304 с.
  15. Кокс Д., Литтл Д., О’Ши Д. Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. М.: Мир, 2000. 687 с.
  16. Батхин А.Б. Резонансное множество многочлена и проблема формальной устойчивости // Вестн. ВолГУ. Сер. 1. Матем. Физ. 2016. № 4 (35). С. 5–23.
  17. Батхин А.Б. Параметризация множества, определяемого обобщенным дискриминантом многочлена // Программирование. 2018. № 2. С. 5–17.
  18. Брюно А.Д., Солеев А. Локальная униформизация пространственной кривой и многогранники Ньютона // Алгебра и анализ. 1991. Т. 3. № 1. С. 67–102.
  19. Брюно А.Д., Азимов А.А. Вычисление унимодулярных матриц степенных преобразований // Программирование. 2023. № 1. С. 38–47.
  20. Маркеев А.П. О движении связанных маятников // Нелинейная динамика. 2013. Т. 9. № 1. С. 27–38.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (84KB)
3.

下载 (60KB)
4.

下载 (54KB)

版权所有 © А.Б. Батхин, З.Х. Хайдаров, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».