On the Simultaneous Reduction of a Pair of Unitoid Matrices to Diagonal Form

封面

如何引用文章

全文:

详细

Let A and B  be Hermitian n*n  matrices with A  being nonsingular. According to a well-known theorem of matrix analysis, these matrices can be brought to diagonal form by one and the same Hermitian congruence transformation if and only if the matrix C = A-1B  has a real spectrum and can be diagonalized by a similarity. An extension of this assertion to the case where two unitoid matrices are simultaneously reduced to diagonal form is stated and proved.

作者简介

Kh. Ikramov

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: ikramov@cs.msu.su
Moscow, Russia

参考

  1. Horn R.A., Johnson C.R. Matrix Analysis. Cambridge: Cambridge University Press, 1985.
  2. Икрамов Х.Д. К опыту спектральной теории для преобразований эрмитовой конгруэнции // Зап. научн. сем. ПОМИ. 2019. Т. 482. С. 114–119.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Х.Д. Икрамов, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).