О вероятностно-статистическом подходе к анализу параметров нелокальности плотности плазмы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе исследуется выборка значений плотности плазмы термоядерной установки. Получена методология обработки экспериментальных данных, позволяющая установить соответствие между упомянутой выборкой и моделью нестационарного шума. Эта модель формируется как свертка стационарной последовательности и функции памяти и позволяет моделировать конкуренцию пространственной и временной нелокальности. Представлена физическая интерпретация параметров нелокальности. Библ. 26. Фиг. 2. Табл. 5.

Полный текст

Доступ закрыт

Об авторах

Н. С. Аркашов

ИМ СО РАН

Автор, ответственный за переписку.
Email: nicky1978@mail.ru
Россия, 630090 Новосибирск, пр-т акад. Коптюга, 4

В. А. Селезнев

НГТУ

Email: selvad46@mail.ru
Россия, 630076 Новосибирск, пр-т Карла Маркса, 20

Список литературы

  1. Аркашов Н.С., Селезнев В.А. О формировании соотношения нелокальностей в модели аномальной диффузии // ТМФ. 2017. Т. 193. 1. С. 115–132.
  2. Basu P., Rudoy D., Wolfe P.J. A nonparametric test for stationarity based on local Fourier analysis // IEEE International Conference on Acoustics, Speech and Signal Processing. 2009. P. 3005–3008.
  3. Будаев В.П., Савин С.П., Зеленый Л.М. Наблюдения перемежаемости и обобщённого самоподобия в турбулентных пограничных слоях лабораторной магнитосферной плазмы: на пути к определению количественных характеристик переноса // УФН. 2011. Т. 189. 9. С. 905–952.
  4. Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Physics Reports. 2000. V. 339. 1. P. 1–77.
  5. Пастухов В.П., Чудин Н.В. Эффективная модель турбулентной конвекции плазмы центральной области токамака // Письма в ЖЭТФ. 2009. Т. 90 10. C. 722–729.
  6. Аркашов Н.C. Об одном методе вероятностно-статистического анализа плотности низкочастотной турбулентной плазмы // Ж. вычисл. матем. и матем. физ. 2019. Т. 59. 3. C. 429–440.
  7. Arkashov N.S. On the model of random walk with multiple memory structure // Physica A: Statistical Mechanics and its Applications. 2022. V. 603. P. 127795.
  8. Platani M., Goldberg I., Lamond A.I., and Swedlow J.R. Cajal Body dynamics and association with chromatin are ATP-dependent // Nature Cell Biology. 2002. V. 4. 7. P. 502–508.
  9. Cherstvy A.G., Chechkin A.V., Metzler R. Anomalous diffusion and ergodicity breaking in heterogeneous diffusion // New Journal of Physics. 2013. V. 15. 8. P. 083039.
  10. Аркашов Н.С. Принцип инвариантности в форме Донскера для процессов частных сумм скользящих средних конечного порядка // Сиб. электрон. мат. изв. 2019. Т.16. С. 1276–1288.
  11. Колмогоров А.Н. Спираль Винера и некоторые другие интересные кривые в гильбертовом пространстве // Докл. АН СССР. 1940. Т. 26. 2. С. 115–118.
  12. Mandelbrot B., Van Ness J. Fractional Brownian motions, fractional noise and applications // SIAM Review. 1968. V. 10. 4. P. 422–437.
  13. Samorodnitsky G. and Taqqu M. Stable Non-Gaussian Random Processes. New York: Chapman & Hall, 1994.
  14. Konstantopoulos T., Sakhanenko A. Convergence and convergence rate to fractional Brownian motion for weighted random sums // Sib. Elektron. Mat. Izv. 2004. V. 1. P. 47–63.
  15. Cannon M.J., Percival D.B., Caccia D.C., Raymond G.M., Bassingthwaighte J.B. Evaluating scaled window variance methods for estimating the Hurst coefficient of time series // Physica A. 1997. V. 241. P. 606–626.
  16. Ширяев А.Н. Вероятность. М.: Наука, 1980.
  17. Олемской А.И., Флат А.Я. Использование концепции фрактала в физике конденсированной среды // УФН. 1993. Т. 163. 12. С. 1–50.
  18. Нигматуллин Р.Р. Дробный интеграл и его физическая интерпретация // ТМФ. 1992. Т. 90. 3. С. 354–368.
  19. Владимирский В., Терлецкий Я. Гидродинамическя теория поступательного броуновского движения // ЖЭТФ. 1945. Т. 15. 6. C. 258–263.
  20. Beran J. Statistics for Long-Memory Processes. New York: Chapman & Hall, 1994.
  21. Королев В.Ю. Вероятностно-статистический анализ хаотических процессов с помощью смешанных гауссовских моделей. Декомпозиция волатильности финансовых индексов и турбулентной плазмы. М.: ИПИ РАН, 2007.
  22. Пригарин С.М. Методы численного моделирования случайных процессов и полей. Новосибирск: ИВМиМГ СО РАН, 2005.
  23. Prigarin S.M., Ogorodnikov V.A. Numerical Modelling of Random Processes and Fields: Algorithms and Applications. Utrecht: VSP, 1996.
  24. Slepian D. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete Case // Bell System Technical Journal. 1978. V. 57. 5. P. 1371–1430.
  25. Haley C.L., Anitescu M. Optimal Bandwidth for Multitaper Spectrum Estimation // IEEE Signal Processing Letters. 2017. V. 24. 11. P. 1696–1700.
  26. Ибрагимов И.А., Линник Ю.В. Независимые и стационарно связанные величины. М.: Наука, 1965.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Фиг 1. График временного ряда значений плотности плазмы, .

Скачать (474KB)
3. Фиг 2. График реально достигнутых уровней значимости, , .

Скачать (153KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».