FORMIROVANIE I ISSLEDOVANIE VODOROD-AKKUMULIRUYuShchIKh KOMPOZITOV TiFe S ZhELEZO-GRAFENOVYM KATALIZATOROM DLYa KhRANENIYa VODORODA
- Authors: Arbuzov A.A1, Shamov I.D1, Sanin V.V1, Lototskiy M.V1, Tarasov B.P1
-
Affiliations:
- Issue: Vol 98, No 11-12 (2025)
- Pages: 600-608
- Section: Водородные технологии
- URL: https://ogarev-online.ru/0044-4618/article/view/356755
- DOI: https://doi.org/10.31857/S0044461825090043
- ID: 356755
Cite item
Abstract
Исследовано формирование композитов TiFe с железо-графеновым катализатором механохимической обработкой в атмосфере водорода и определены их водородсорбционные характеристики. Показано, что добавка железо-графенового катализатора к сплавам Ti с Fe увеличивает скорость процесса гидрирования и обеспечивает высокую обратимую водородосикость композита. На основе водород-аккумулирующего композита изготовлен опытный образец аккумулятора водорода и установлены его эксплуатационные характеристики.
About the authors
A. A Arbuzov
Author for correspondence.
Email: arbuzov@icp.ac.ru
ORCID iD: 0000-0002-1722-8322
I. D Shamov
Email: arbuzov@icp.ac.ru
ORCID iD: 0009-0002-1335-2120
V. V Sanin
Email: arbuzov@icp.ac.ru
ResearcherId: N-7360-2015
к.т.н.
M. V Lototskiy
Email: arbuzov@icp.ac.ru
ORCID iD: 0000-0001-8387-2856
к.х.н
B. P Tarasov
Email: arbuzov@icp.ac.ru
ORCID iD: 0000-0002-1062-3063
д.х.н.
References
- Bellosta von Colbe J., Ares J.-R., Barale J., Baricco M., Buckley C., Capurso G., Gallandat N., Grant D. M., Guzik M. N., Jacob I., Jensen E. H., Jensen T., Jepsen J., Klassen T., Lototskyy M. V., Manickam K., Montone A., Puszkiel J., Sartori S., Sheppard D. A., Stuart A., Walker G., Webb C. J., Yang H., Yartys V., Züttel A., Dornheim M. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives // Int. J. Hydrogen Energy. 2019. V. 44. P. 7780–7808. https://doi.org/10.1016/j.ijhydene.2019.01.104
- Lototskyy M. V., Tarasov B. P., Yartys V. A. Gas-phase applications of metal hydrides // J. Energy Storage. 2023. V. 72. ID 108165. https://doi.org/10.1016/j.est.2023.108165
- Klopčić N., Grimmer I., Winkler F., Sartory M., Trattner A. A review on metal hydride materials for hydrogen storage // J. Energy Storage. 2023. V. 72. ID 108456. https://doi.org/10.1016/j.est.2023.108456
- Manna J., Tougas B., Huot J. Mechanical activation of air exposed TiFe + 4 wt% Cr alloy for hydrogenation by cold rolling and ball milling // Int. J. Hydrogen Energy. 2018. V. 43. P. 20795–20800. https://doi.org/10.1016/j.ijhydene.2018.09.096
- Li Y., Shang H., Zhang Y., Li P., Qi Y., Zhao D. Investigations on gaseous hydrogen storage performances and reactivation ability of as-cast TiFe1–xNix (x = 0, 0.1, 0.2 and 0.4) alloys // Int. J. Hydrogen Energy. 2019. V. 44. P. 4240–4252. https://doi.org/10.1016/j.ijhydene.2018.12.144
- Park K. B., Ko W.-S., Fadonougbo J. O., Na T.-W., Im H.-T., Park J.-Y., Kang J.-W., Kang H.-S., Park C.-S., Park H.-K. Effect of Fe substitution by Mn and Cr on first hydrogenation kinetics of air-exposed TiFe-based hydrogen storage alloy // Mater. Characterization. 2021. V. 178. ID 111246. https://doi.org/10.1016/j.matchar.2021.111246
- Zhai T., Wei Z., Yuan Z., Han Z., Feng D., Wang H., Zhang Y. Influences of La addition on the hydrogen storage performances of TiFe-base alloy // J. Phys. Chem. Solids. 2021. V. 157. ID 110176. https://doi.org/10.1016/j.jpcs.2021.110176
- Lototskyy M. V., Williams M., Yartys V. A., Klochko Y. V., Linkov V. M. Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification // J. Alloys Compd. 2011. V. 509. P. S555–S561. https://doi.org/10.1016/j.jallcom.2010.09.206
- Sun H., Yan Z., Han Zh., Li J., Zhai T., Yuan Z., Li T., Xu J., Zhang Y. Hydrogen storage properties of TiFe-based composite with Ni addition // Heliyon. 2024. V. 10. ID e41022. https://doi.org/10.1016/j.heliyon.2024.e41022
- Desai F. J., Uddin M. N., Rahman M. M., Asmatulu R. A critical review on improving hydrogen storage properties of metal hydride via nanostructuring and integrating carbonaceous materials // Int. J. Hydrogen Energy. 2023. V. 48. P. 29256–29294. https://doi.org/10.1016/j.ijhydene.2023.04.029
- Niu Y., Li T., Yuan Z., Han Q., Han Zh., Liu Ch., Sun Y. An overview of TiFe-based alloys for hydrogen storage: Structure, element substitution and preparation // Int. J. Hydrogen Energy. 2025. V. 175. ID 151503. https://doi.org/10.1016/j.ijhydene.2025.151503
- Tarasov B. P., Shamov I. D., Melnikov S. A., Sanin V. V., Lototskyy M. V. Influence of the preparation routes on chemical and phase composition and hydrogen sorption performances of hydrogen storage alloys based on TiFe intermetallic // High Energy Chem. 2024. V. 58. Suppl. 4. P. S539–S548. https://doi.org/10.1134/S0018143924701613
- Tarasov B. P., Arbuzov A. A., Mozhzhuhin S. A., Volodin A. A., Fursikov P. V., Lototskyy M. V., Yartys V. A. Hydrogen storage behavior of magnesium catalyzed by nickel-graphene nanocomposites // Int. J. Hydrogen Energy. 2019. V. 44. P. 29212–29223. https://doi.org/10.1016/j.ijhydene.2019.02.033
- Deng Y., Yang M., Zaiser M., Yu Sh. Enhancing dehydrogenation performance of MgH2/graphene heterojunctions via noble metal intercalation // Int. J. Hydrogen Energy. 2023. V. 48. P. 16733–16744. https://doi.org/10.1016/j.ijhydene.2023.01.165
- Zhou D., Cui K., Zhou Zh., Liu Ch., Zhao W., Li P., Qu X. Enhanced hydrogen-storage properties of MgH2 by Fe–Ni catalyst modified three-dimensional graphene // Int. J. Hydrogen Energy. 2021. V. 46. P. 34369–34380. https://doi.org/10.1016/j.ijhydene.2021.07.230
- Tarasov B. P., Arbuzov A. A., Volodin A. A., Fursikov P. V., Mozhzhuhin S. A., Lototskyy M. V., Yartys V. A. Metal hydride–graphene composites for hydrogen based energy storage // J. Alloys Compd. 2022. V. 896. ID 162881. https://doi.org/10.1016/j.jallcom.2021.162881
- Pat. RF 220568 (publ. 2023). Low-pressure multiple-use metal hydride hydrogen accumulator.
- Sanin V. V., Shamov I. D., Rakhutskii A. A., Tarasov B. P., Lototskyy M. V., Melnikov S. A. Features of metallurgy of titanium hydride-forming alloys // High Energy Chem. 2024. V. 58. Suppl. 4. P. S492–S502. https://doi.org/10.1134/S0018143924701571
- Reilly J. J., Wiswall R. H. Formation and properties of iron titanium hydride // Inorg. Chem. 1974. V. 13. P. 218–222. https://doi.org/10.1021/ic50131a042
- Reidinger F., Lynch J. F., Reilly J. J. An x-ray diffraction examination of the FeTi–H2 system // J. Phys. F: Metal Phys. 1982. V. 12. P. L49–L55. https://doi.org/10.1088/0305-4608/13/1/526
- Dematteis E. M., Berti N., Cuevas F., Latroche M., Baricco M. Substitutional effects in TiFe for hydrogen storage: A comprehensive review // Mater. Advances. 2021. V. 2. P. 2524–2560. https://doi.org/10.1039/d1ma00101a
- Lototskyy M. V. New model of phase equilibria in metal–hydrogen systems: Features and software // Int. J. Hydrogen Energy. 2016. V. 41. P. 2739–2761. https://doi.org/10.1016/j.ijhydene.2015.12.055
- Lototskyy M. V., Denys R. V., Yartys V. A., Eriksen J., Goh J., Nyamsi S. N., Sita C., Cummings F. An outstanding effect of graphite in nano-MgH2–TiH2 on hydrogen storage performance // J. Mater. Chem. A. 2018. V. 6. P. 10740–10754. https://doi.org/10.1039/C8TA02969E
- Pat. RF 229688 (publ. 2024). Device for producing composite hydrogen storage materials.
Supplementary files


