Analysis of the Hydrodynamics of Swirling Flows in Direct-Flow Cyclones

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A mathematical model is presented that describes the movement of gas in a direct-flow cyclone. The equations of motion of the gas phase were solved and profiles for the tangential and axial components of gas velocity were derived based on them. The results obtained are compared with the results of numerical simulation. The latter was carried out in the FlowVision software using the SST turbulence model. Via numerical calculations the change in the tangential and axial components of the gas velocity was determined at distances of 110, 150, 200, and 250 mm from the plate turbulator, or cyclone swirler.

Sobre autores

V. Toptalov

St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia

Email: acjournal.nauka.nw@yandex.ru

Yu. Chesnokov

St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia

Email: acjournal.nauka.nw@yandex.ru

O. Flisyuk

St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia

Email: acjournal.nauka.nw@yandex.ru

N. Martsulevich

St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia

Email: acjournal.nauka.nw@yandex.ru

I. Likhachev

St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, Russia

Autor responsável pela correspondência
Email: acjournal.nauka.nw@yandex.ru

Bibliografia

  1. Cristobal C., Gil A. Modeling the gas and particle flow inside cyclone separators // Progress Energy Combust. 2007. V. 33 N 5. P. 409-452. https://doi.org/10.1016/j.pecs.2007.02.001
  2. Peng W., Hoffmann A. C., Dries H. W.-A., Regelink M. A., Stein L. E. Experimental study of the vortex-end in centrifugal separators: The Nature of the vortex end // Chem. Eng. Sci. 2005. V. 60. P. 6919-692828. https://doi.org/10.1016/j.ces.2005.06.009
  3. Biegger C., Sotgiu C., Weigand B. Numerical investigation of flow and heat transfer in a swirl tube // Int. J. Therm. Sci. 2015. V. 96. P. 319-330. https://doi.org/10.1016/j.ijthermalsci.2014.12.001
  4. Seibold F., Weigand B. Numerical analysis of the flow pattern in convergent vortex tubes for cyclone cooling applications // Int. J. Heat Fluid Flow. 2021. V. 90. https://doi.org/10.1016/j.ijheatfluidflow.2021.108806
  5. Bruschewski M., Grundmann S. Schiffer H.-P. Considerations for the design of swirl chambers for the cyclone cooling of turbine blades and for other applications with high swirl intensity // Int. J. Heat Fluid Flow. 2020. V. 86. ID 108670. https://doi.org/10.1016/j.ijheatfluidflow.2020.108670
  6. Novotny P., Weigand B., Marsik F., Biegger C., Tomas M. Flow structures in a swirl flow - vortex breakdown condition //j. Phys. 2018. Ser. 1045. ID 012031. https://doi.org/10.1088/1742-6596/1045/1/012031
  7. Tianxing Z., Alshehhi M., Khezzar L., Xia Y., Kharoua N. Experimental investigation of confined swirling flow and its interaction with a bluff body //j. Fluids Eng. 2019. V. 142. N 1. ID 011102.
  8. Шиляев М. И., Шиляев А. М. Моделирование процесса пылеулавливания в прямоточном циклоне. 1. Аэродинамика и коэффициент диффузии частиц в циклонной камере // Теплофизика и аэромеханика. 2003. Т. 10. № 2. С. 157-170.
  9. Тарасова Л. А., Терехов М. А., Трошкин О. А. Расчет гидравлического сопротивления вихревого аппарата // Хим. и нефтегаз. машиностроение. 2004. № 2. С. 11-12.
  10. Grundmann S., Wassermann F., Lorenz R., Jung B., Tropea C. Experimental investigation of helical structures in swirling flows // Int. J. Heat Fluid Flow. 2012. V. 37. P. 51-63. https://doi.org/10.1016/j.ijheatfluidflow.2012.05.003
  11. Huang L., Deng S., Chen Z., Guan J., Chen M. Numerical analysis of a novel gas-liquid pre-separation cyclone // Sep. Purif. Technol. 2018. V. 194. P. 470- 479. https://doi.org/10.1016/j.seppur.2017.11.066
  12. Bruschewski M., Scherhag C., Schiffer H.-P., Grundmann S. Influence of channel geometry and flow variables on cyclone cooling of turbine blades //j. Turbomach. 2016. V. 138. N 6. ID 061005. https://doi.org/10.1115/1.4032363
  13. Mikheev N., Saushin I., Paereliy A., Kratirov D., Levin K. Cyclone separator for gas-liquid mixture with high flux density // Powder Technol. 2018. V. 339. P. 326-333. https://doi.org/10.1016/j.powtec.2018.08.040.
  14. Турубаев Р. Р., Шваб А. В. Численное исследование аэродинамики закрученного потока в вихревой камере комбинированного пневматического аппарата // Вестн. Том. гос. ун-та. Математика и механика. 2017. № 47. С. 87-98. https://doi.org/10.17223/19988621/47/9
  15. Николаев А. Н., Харьков В. В. Описание профилей окружной и осевой компонент скорости в полом вихревом аппарате // Вестн. Казан. технол. ун-та. 2016. № 17. С. 71-74.
  16. Yu G., Dong S., Yang L., Yan, D., Dong K., Wei Y., Wang B. Experimental and numerical studies on a new double-stage tandem-nesting cyclone // Chem. Eng. Sci. 2021. V. 236. ID 116537. https://doi.org/10.1016/j.ces.2021.116537
  17. Li L., Du C., Chen X., Wang J., Fan X. Numerical study on flow and heat transfer behavior of vortex and film composite cooling //j. Mech. Sci. Technol. 2018. V. 32. N 6. P. 2905-2917. https://doi.org/10.1007/s12206-018-0547-4
  18. Yang C., Jeng D., Yang Y.-J., Chen H.-R., Gau C. Experimental study of pre-swirl flow effect on the heat transfer process in the entry region of a convergent pipe // Exp. Therm. Fluid Sci. 2011. V. 35. N 1. P. 73-81. https://doi.org/10.1016/j.expthermflusci. 2010.08.008
  19. You Y., Seibold F., Wang S., Weigand B., Gross U. URANS of turbulent flow and heat transfer in divergent swirl tubes using the k-Ω SST turbulence model with curvature correction // Int. J. Heat Mass Transf. 2020 V. 159. ID 120088. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120088
  20. Платонов Д. В, Минаков А. В., Дектерев А. А., Сентябов А. В. Численное моделирование пространственных течений с закруткой потока // Компьютер. исслед. и моделирование. 2013. Т. 5. № 4. С. 635-648. https://doi.org/10.20537/2076-7633-2013-5-4-635-648
  21. Маликов З. М., Мадалиев М. Э. Математическое моделирование турбулентного течения в центробежном сепараторе // Вестн. Tом. гос. ун-та. 2021. № 71. C. 121-138. https://doi.org/10.17223/19988621/71/10
  22. Усманова Р. Р., Жернаков В. С. Моделирование движения закрученного потока в динамическом газопромывателе // Вестн. УГАТУ. 2013. Т. 17. № 1 (54). С. 63-67.
  23. Narasimha M., Brennan M. S., Holtham P. N., Napier- Munn T. J. A comprehensive CFD model of dense medium cyclone performance // Miner Eng. 2007. V. 20. N 4. P. 414-426. https://doi.org/10.1016/j.mineng.2006.10.004
  24. Mousavi S. M., Ghadimi B., Kowsary F. Numerical study on the effects of multiple inlet slot configurations on swirl cooling of a gas turbine blade leading edge // Int.Commun. Heat Mass Transf. 2018. V. 90. P. 34-43. https://doi.org/10.1016/j. icheatmasstransfer.2017.10.012
  25. Biegger C., Rao Y., Weigand B. Flow and heat transfer measurements inswirl tubes with one and multiple tangential inlet jets for internal gas turbine blade cooling // Int. J. Heat Fluid Flow. 2018. V. 73. P. 174-187. https://doi.org/10.1016/j.ijheatfluidflow.2018.07.011
  26. Волк А. М. Движение твердых частиц в закрученном потоке // Энергетика. Изв. вузов и энергетических объединений СНГ. 2009. № 3. C. 77-81.
  27. Чесноков Ю. Г., Бауман А. В., Флисюк О. М. Расчет поля скоростей жидкости в гидроциклоне // ЖПХ. 2006. Т. 79. № 5. С. 783-786.
  28. Flisiyk O. M., Martsulevich N. A., Toptalov V. S. Theoretical and experimental analysis of dependence of efficiency of direct-flow cyclone on geometry of separating chamber // ChemChemTech. 2021. V. 64. N 8. С. 99-106. https://doi.org/10.6060/ivkkt.20216408.6419
  29. Bloor M. I. G., Ingham D. B. The flow in industrial cyclone //j. Fluid Mech. 1987. V. 178. P. 507-519.
  30. Гольдштик М. А. Вихревые потоки. Новосибирск: Наука, 1981. 366 с.
  31. Barber T. A. On the Beltramian motion of the bidirectional vortex in a conical cyclone //j. Fluid Mech. 2017. V. 828. P. 708-732. https://doi.org/10.1017/jfm.2017.494
  32. Majdalani J. Helical solutions of the bidirectional vortex in a cylindrical cyclone: Beltramian and Trkalian motions //Fluid Dyn. Res. 2012. V. 44. ID 065506. https://doi.org/10.1088/0169-5983/44/6/065506

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».