Hydrogen-bonded dialkylcarboxamide cations and their dihalogenohalogenates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Molecular geometry, electron structure and thermodynamic parameters for a representative group of tertiary amides and bis(amide)hydrogen cations were computed by density functional theory at ωB97X-V/dgdzvp//ωB97X/dgdzvp level, trihalide salts of these cations were synthesized, and NMR manifestations of short hydrogen bond in these cations were experimentally demonstrated. With a vocabulary of computational techniques, a number of intramolecular noncovalent interactions such as H···O+···H, C–H···O, C–H···Н–С were revealed, and the role of these interaction in the stabilization of hemiprotonated amides and their saline forms evaluated.

About the authors

O. M. Zarechnaya

L. M. Litvinenko Institute of Physical Organic and Coal Chemistry

Email: mikhail0vvasilii@yandex.ru
Donetsk, 283048 Russia

V. A. Mikhailov

L. M. Litvinenko Institute of Physical Organic and Coal Chemistry

Author for correspondence.
Email: mikhail0vvasilii@yandex.ru
Donetsk, 283048 Russia

References

  1. Le Bras J., Muzart J. // Molecules 2018. Vol. 23. Art. 1939. doi: 10.3390/molecules23081939
  2. Heravi M.M., Ghavidel M., Mohammadkhani L. // RSC Adv. 2018. Vol. 8. Art. 27832. doi: 10.1039/c8ra04985h
  3. Chenault H.K. In: Handbook of Pyrrolidone and Caprolactam Based Materials / Ed. O.M. Musa. Wiley, 2021. 69 p. doi: 10.1002/9781119468769.HPCBM001
  4. Meot-Ner (Mautner) M. // Chem. Rev. 2012. Vol. 112. P. PR22. doi: 10.1021/cr200430n
  5. Hunter E.P.L., Lias S.G. // J. Phys. Chem. Ref. Data. 1998. Vol. 27. P. 413. doi: 10.1063/1.556018
  6. Meot-Ner M. // Int. J. Mass Spectr. 2003. Vol. 227. P. 525. doi: 10.1016/S1387-3806(03)00100-3
  7. Laurence C., Brameld K.A., Graton J., Le Questel J.-Y., Renault E. // J. Org. Chem. 2021. Vol. 86. P. 4143. doi: 10.1021/acs.joc.0c02964
  8. Meot-Ner M. // J. Am. Chem. Soс. 1984. Vol. 106. P. 278. doi: 10.1021/ja00314a003
  9. Witt M., Kreft D., Grutzmacher H.F. // Eur. J. Mass Spectrom. 2003. Vol. 9. P. 81. doi: 10.1255/ejms.535
  10. Witt M., Grutzmacher H.F. // Int. J. Mass Spectrom. 1997. Vol. 165−166. P. 49. doi: 10.1016/S0168-1176(97)00152-3
  11. Hussain M.S., Schlemper E.O. // J. Chem. Soc. Dalton Trans. 1980. Vol. 35. P. 750. doi: 10.1039/DT9800000750
  12. Hill C.L., Bouchard D.A., Kadkhodayan M., Williamson M.M., Schmidt J.A., Hilinski E.F. // J. Am. Chem. Soc. 1988. Vol. 110. P. 5471. doi: 10.1021/ja00224a035
  13. Nishio Y., Yubata K., Wakai Y., Notsu K., Yamamoto K., Fujiwara H., Matsubara H. // Tetrahedron. 2019. Vol. 75. P. 1398. doi: 10.1016/J.TET.2019.01.055
  14. Parmar S., Pal S., Biswas A., Gosavi S., Chakraborty S., Reddy M.C., Ogale S. // ChemComm. 2019. Vol. 55. P. 7562. doi: 10.1039/C9CC03485D
  15. Bortoluzzi M., Marchetti F., Pampaloni G., Zacchini S. // New J. Chem. 2016. Vol. 40. P. 8271. doi: 10.1039/C6NJ01822J
  16. Azadmanesh J., Slobodnik K., Struble L.R., Lutz W.E., Coates L., Weiss K.L., Myles D.A.A., Kroll T., Borgstahl G.E.O. // Nature Comm. 2024. Vol. 15. Art. 5973. doi: 10.1038/s41467-024-50260-w
  17. Buergi H.B., Dunitz J.D. // Acc. Chem. Res. 1983. Vol. 16. P. 153. doi: 10.1021/ar00089a002
  18. Malaspina L.A., Hoser A.A., Edwards A.J., Woińska M., Turner M.J., Price J.R., Sugimoto K., Nishibori E., Bürgi H.-B., Jayatilaka D., Grabowsky S. // CrystEngComm. 2020. Vol. 22. P. 4778. doi: 10.1039/d0ce00378f
  19. Krawczuk A., Genoni A. // Acta Crystallogr. (B). 2024. Vol. 80. P. 249. doi: 10.1107/S2052520624003421
  20. Behmel P., Jones P.G., Sheldrick G.M., Ziegler M. // J. Mol. Struct. 1980. Vol. 69. P. 41. doi: 10.1016/0022-2860(80)85262-8
  21. Behmel P., Clegg W., Sheldrick G.M., Weber G., Ziegler M. // J. Mol. Struct. 1981. Vol. 74. P. 19. doi: 10.1016/0022-2860(81)80003-8
  22. Frydrych R., Muschter T., Brudgam I., Hartl H. // Z. Naturforsch. (B). 1990. Vol. 45. P. 679. doi: 10.1515/znb-1990-0516
  23. Wang J.P., Han Q.X., Niu J.Y. // Trans. Metal Chem. 2004. Vol. 29. P. 170. doi: 10.1023/B:TMCH. 0000019415.56825.1a
  24. Hazin K., Serin S.C., Patrick B.O., Ezhova M.B., Gates D.P. // Dalton Trans. 2017. Vol. 46. P. 5901. doi: 10.1039/C6DT04820J
  25. Kolesov B.A., Chupina A.V., Berezin A.S., Kompankov N.B., Abramov P.A., Sokolov M.N. // Phys. Chem. Chem. Phys. 2020. Vol. 22. P. 25344. doi: 10.1039/D0CP04152A
  26. Huggins M.L. // Angew. Chem. Int. Ed. 1971. Vol. 10. P. 147. doi: 10.1002/anie.197101471
  27. Emsley J. // Chem. Soc. Rev. 1980. Vol. 9. P. 91. doi: 10.1039/CS9800900091
  28. Gilli G., Gilli P. // J. Mol. Struct. 2000. Vol. 552. P. 1.
  29. Crabtree R.H. // Chem. Soc. Rev. 2017. Vol. 46. P. 1720. doi: 10.1039/C6CS00688D
  30. Echeverría J., Alvarez S. // Chem. Sci. 2023. Vol. 14. P. 11647. doi: 10.1039/D3SC02238B
  31. Gilli G., Gilli P. The Nature of the Hydrogen Bond. Oxford: Oxford University Press, 2009. 317 p.
  32. Grabowski S.J. // Chem. Rev. 2011. Vol. 111. P. 2597. doi: 10.1021/cr800346f
  33. Jablonski M. // Molecules. 2020. Vol. 25. Art. 5512. doi: 10.3390/molecules25235512
  34. Grabowski S.J. // Chem. Commun. 2024. Vol. 60. P. 6239. doi: 10.1039/D4CC01769B
  35. Weinhold F. // Molecules. 2023. Vol. 28. Art. 3776. doi: 10.3390/molecules28093776
  36. Shaik S., Danovich D., Zare R.N. // J. Am. Chem. Soc. 2023. Vol. 145. P. 20132. doi: 10.1021/jacs.3c08196
  37. Civiš S., Lamanec M., Špirko V., Kubišta J., Špetko M., Hobza P. // J. Am. Chem. Soc. 2023. Vol. 145. P. 8550. doi: 10.1021/jacs.3c00802
  38. Politzer P., Murray J. In: Chemical Reactivity in Confined Systems / Eds. P.K. Chattaraj, D. Chakraborty. Wiley, 2021. P. 113. doi: 10.1002/9781119683353.ch7
  39. Krokidis X., Vuilleumier R., Borgis D., Silvi B. // Mol. Phys. 1999. Vol. 96. P. 265. doi: 10.1080/00268979909482959
  40. Grabowski S.J., Ugalde J.M. // Chem. Phys. Lett. 2010. Vol. 493. P. 37. doi: 10.1016/j.cplett.2010.05.008
  41. Fuster F., Grabowski S.J. // J. Phys. Chem. (A). 2011. Vol. 115. P. 10078. doi: 10.1021/jp2056859
  42. Weinhold F., Klein R.A. // Mol. Phys. 2012. Vol. 110. P. 565. doi: 10.1080/00268976.2012.661478
  43. Vener M.V., Levina E.O., Astakhov A.A., Tsirelson V.G. // Chem. Phys. Lett. 2015. Vol. 638. P. 233. doi: 10.1016/j.cplett.2015.08.053
  44. Silvi B., Ratajczak H. // Phys. Chem. Chem. Phys. 2016. Vol. 18. P. 27442. doi: 10.1039/C6CP05400E
  45. Molčanov K., Jelsch C., Wenger E., Stare J., Madsen A.Ø., Kojić-Prodić B. // CrystEngComm. 2017. Vol. 19. P. 3898. doi: 10.1039/C7CE00501F
  46. Guevara-Vela J.M., Gallegos M., Valentín-Rodríguez M.A., Costales A., Rocha-Rinza T., Pendás A.M. // Molecules. 2021. Vol. 26. P. 4196. doi: 10.3390/molecules26144196
  47. Platts J.A., Laidig K.E. // J. Phys. Chem. 1996. Vol. 100. P. 13455. doi: 10.1021/jp9603849
  48. Schiøtt B., Iversen B.B., Madsen G.K.H., Bruice T.C. // J. Am. Chem. Soc. 1998. Vol. 120. P. 12117. doi: 10.1021/ja982317t
  49. Saunders L.K., Pallipurath A.R., Gutmann M.J., Nowell H., Zhang N., Allan D.R. // CrystEngComm. 2021. Vol. 23. P. 6180. doi: 10.1039/D1CE00355K
  50. Weinhold F., Schleyer P.R., McKee W.C. // J. Comput. Chem. 2014. Vol. 35. P. 1499. doi: 10.1002/jcc.23654
  51. Taylor R. // CrystEngComm. 2020. Vol. 22. P. 7145. doi: 10.1039/D0CE00270D
  52. Roth S., Schnick W. // Z. Naturforsch. (B). 2001. Vol. 56. P. 1020. doi: 10.1515/znb-2001-1010
  53. Suzuki H., Ishiguro S. // Acta Crystallogr. (E). 2006. Vol. 62. P. m576. doi: 10.1107/S1600536806005575
  54. Siu P.W., Gates D.P. // Organometallics. 2009. Vol. 28. P. 4491. doi: 10.1021/om9003187
  55. Shabari A.R., Pourazouvi M., Rad S.D. // Acta Crystallogr. (E). 2012. Vol. 68. P. m1226. doi: 10.1107/S1600536812036677
  56. Bekaert A., Barberan O., Kaloun E.B., Danan A., Brion J.D., Lemoine L., Viossat B. // Z. Kristallogr. N.C.S. 2001. Vol. 216. P. 457 doi: 10.1524/ncrs.2001.216.14.479
  57. Mammadova G.Z., Mertsalov D.F., Shchevnikov D.M., Grigoriev M.S., Akkurt M., Yıldırım S.Ö., Bhattarai A. // Acta Crystallogr. (E). 2023. Vol. 79. P. 690. doi: 10.1107/S2056989023005509
  58. Molina Molina J., Dobado J. // Theor. Chem. Acc. 2001. Vol. 105. P. 328. doi: 10.1007/s002140000231
  59. Durrant M.C. // Chem. Sci. 2015. Vol. 6. P. 6614. doi: 10.1039/C5SC02076J
  60. Siiskonen A., Priimagi A. // J. Mol. Model. 2017. Vol. 23. Art. 50. doi: 10.1007/s00894-017-3212-4
  61. Gnanasekar S.P., Arunan E. // Austr. J. Chem. 2020. Vol. 73. P. 767. doi: 10.1071/CH19557
  62. Koch U., Popelier P.L.A. // J. Phys. Chem. 1995. Vol. 99. P. 9747. doi: 10.1021/j100024a016
  63. Howard E.I., Guillot B., Blakeley M.P., Haertlein M., Moulin M., Mitschler A., Cousido-Siah A., Fadel F., Valsecchi W.M., Tomizaki T., Petrova T., Claudot J., Podjarny A. // IUCrJ. 2016. Vol. 3. P. 115. doi: 10.1107/S2052252515024161
  64. Popelier P.L.A. // J. Phys. Chem. (A). 1998. Vol. 102. P. 1873. doi: 10.1021/jp9805048
  65. Wolstenholme D.J., Cameron T.S. // J. Phys. Chem. (A). 2006. Vol. 110. P. 8970. doi: 10.1021/jp061205i
  66. Hathwar V.R., Sist M., Jørgensen M.R.V., Mamakhel A.H., Wang X., Hoffmann C.M., Sugimoto K., Overgaard J., Iversen B.B. // IUCrJ. 2015. Vol. 2. P. 563. doi: 10.1107/S2052252515012130
  67. Fugel M., Ponomarenko M., Hesse M., Malaspina L., Kleemiss F., Sugimoto K., Genoni A., Röschenthaler G.-V., Grabowsky S. // Dalton Trans. 2019. Vol. 48. P. 16330. doi: 10.1039/c9dt02772f
  68. Monteiro N.K.V., Firme C.L. // J. Phys. Chem. (A). 2014. Vol. 118. P. 1730. doi: 10.1021/jp500131z
  69. Lomas J.S. // Magn. Res. Chem. 2019. Vol. 57. P. 1121. doi: 10.1002/mrc.4900
  70. Bertolasi V., Gilli P., Ferretti V., Gilli G. // J. Chem. Soc. Perkin Trans. 2. 1997. P. 945. doi: 10.1039/A606862F
  71. Kumar G.A., McAllister M.A. // J. Org. Chem. 1998. Vol. 63. P. 6968. doi: 10.1021/jo980759h
  72. Pacios L.F., Gómez P.C. // J. Phys. Chem. (A). 2004. Vol. 108. P. 11783. doi: 10.1021/jp0466892
  73. Siskos M.G., Tzakos A.G., Gerothanassis I.P. // Org. Biomol. Chem. 2015. Vol. 13. P. 8852. doi: 10.1039/C5OB00920K
  74. Benedetti E., Di Blasio B., Baine P. // J. Chem. Soc. Perkin Trans. 2. 1980. P. 500. doi: 10.1039/P29800000500
  75. Perumalla S.R., Sun C.C. // CrystEngComm. 2013. Vol. 15. P. 8941. doi: 10.1039/C3CE41271G
  76. Popov A.I., Swensen R.F. // J. Am. Chem. Soc. 1955. Vol. 77. P. 3724. doi: 10.1021/ja01619a015
  77. Михайлов В.А. // Укр. хим. ж. 1989. T. 35. C. 1225.
  78. Jaconelli H.S., Kennedy A.R. // Acta Crystallogr. (C). 2024. Vol. 80. P. 514. doi: 10.1107/S2053229624007332
  79. Заречная О.М., Михайлов В.А. // ЖОХ. 2024. Т. 94. С. 10. doi: 10.31857/S0044460X24010022
  80. Заречная О.М., Михайлов В.А. // ЖОХ. 2024. Т. 94. С. 315. doi: 10.31857/S0044460X24030011
  81. Bekaert A., Provot O., Rasolojaona O., Alami M., Brion J.-D. // Tetrahedron Lett. 2005. Vol. 46. P. 4187. doi: 10.1016/j.tetlet.2005.04.049
  82. Belot J.A., Clark J., Cowan J.A., Harbison G.S., Kolesnikov A.I., Kye Y.-S., Schultz A.J., Silvernail C., Zhao X. // J. Phys. Chem. (B). 2004. Vol. 108. P. 6922. doi: 10.1021/jp0496710
  83. Madsen G.K.H., McIntyre G.J., Schiøtt B., Lar­sen F.K. // Chem. Eur. J. 2007. Vol. 13. P. 5539. doi: 10.1002/chem.200601490
  84. Kannengießer R., Klahm S., Vinh Lam Nguyen H., Lüchow A., Stahl W. // J. Chem. Phys. 2014. Vol. 141. Art. 204308. doi: 10.1063/1.4901980
  85. Umebayashi Y., Matsumoto K., Mune Y., Zhang Y., Ishigu­ro S. // Phys. Chem. Chem. Phys. 2003. Vol. 5. P. 2552. doi: 10.1039/B302143B
  86. Müller G., Lutz M., Harder S. // Acta Crystallogr. (B). 1996. Vol. 52. P. 1014. doi: 10.1107/S0108768196008300
  87. Fernholt L., Samdal S., Seip R. // J. Mol. Struct. 1981. Vol. 72. P. 217. doi: 10.1016/0022-2860(81)85023-5
  88. Allen F.H., Watson D.G., Brammer L., Orpen A.G., Taylor R. // Int. Tables Cryst. 2006. Vol. C. P. 790. doi: 10.1107/97809553602060000621
  89. Schultz G., Hargittai I. // J. Phys. Chem. 1993. Vol. 97. P. 4966. doi: 10.1021/j100121a018
  90. Mack H.-G., Oberhammer H. // J. Am. Chem. Soc. 1997. Vol. 119. P. 3567. doi: 10.1021/ja964374x
  91. Fujitake M., Kubota Y., Ohashi N. // J. Mol. Spectrosc. 2006. Vol. 236. P. 97. doi: 10.1016/j.jms.2005.12.013
  92. Drakenberg T., Dahlqvist K.J., Forsen S. // J. Phys. Chem. 1972. Vol. 76. P. 2178. doi: 10.1021/j100659a020
  93. Becke A.D., Edgecombe K.E. // J. Chem. Phys. 1990. Vol. 92. P. 5397. doi: 10.1063/1.458517
  94. Grin Y., Savin A., Silvi B. / The ELF Perspective of chemical bonding. Ch 10. P.1-53. In: The Chemical Bond: Fundamental Aspects of Chemical Bonding. Ed.: G. Frenking, S. Shaik (2014)/ Weinheim. Wiley-VCH. doi: 10.1002/9783527664696.ch10
  95. Jacobsen H. // Can. J. Chem. 2008. Vol. 86. P. 695. doi: 10.1139/v08-052
  96. Boto R.A., Contreras-García J., Tierny J., Piquemal J.-P. // Mol. Phys. 2015. P. 1. doi: 10.1080/00268976.2015.1123777
  97. Birkedal H., Madsen D., Mathiesen R.H., Knudsen K., Weber H.-P., Pattison P., Schwarzenbach D. // Acta Crystallogr. (A). 2004. P. 371. doi: 10.1107/S0108767304015120
  98. Berski S., Latajka Z. // Int. J. Quant. Chem. 2002. Vol. 90. P. 1108. doi: 10.1002/qua.10227
  99. Bader R.F.W., Slee T.S., Cremer D., Kraka E. // J. Am. Chem. Soc. 1983. Vol. 105. P. 5061. doi: 10.1021/ja00353a035
  100. Joly D., Pellejà L., Narbey S., Oswald F., Chiron J., Clifford J.N., Palomares E., Demadrille R. // Sci. Rep. 2014. Vol. 4. Art. 4033. doi: 10.1038/srep04033
  101. Simanenko Yu.S., Savelova V.A., Prokop’eva T.M., Mikhailov V.A., Turovskaya M.K., Karpichev E.A., Popov A.F., Gillitt N.D., Bunton C.A. // J. Org. Chem. 2004. Vol. 69. P. 9238. doi: 10.1021/jo0402430
  102. Заречная О.М., Михайлов В.А. // Вестн. ДонНТУ 2021. C. 34.
  103. Дорохова Т.В., Михайлов В.А., Каниболоцкий А.Л., Прокопьева Т.М., Савелова В.А., Попов А.Ф. // ТЭХ. 2008. Т. 44. С. 298; Dorokhova T.V., Mikhailov V.A., Kanibolotskii A.L., Prokop’eva T.M., Savelova V.A., Popov A.F. // Theor. Exp. Chem. 2008. Vol. 44. P. 307. doi: 10.1007/s11237-008-9042-9
  104. Suponitsky K.Yu., Burakov N.I., Кanibolotsky A.L., Mikhailov V.A. // J. Phys. Chem. (A). 2016. Vol. 120. P. 4179. doi: 10.1021/acs.jpca.6b02192
  105. Zabolotniy A.A., Trush E.N., Zarechnaya O.M., Mikhailov V.A. // J. Ionic Liq. 2022. Vol. 2. Art. 100045. doi: 10.1016/j.jil.2022.100045
  106. Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. Vol. 152. Art. 224108. doi: 10.1063/5.0004608
  107. Chai J.-D., Head-Gordon M. // J. Chem. Phys. 2008. Vol. 128. Art. 084106. doi: 10.1063/1.2834918
  108. Godbout N., Salahub D.R., Andzelm, J., Wimmer E. // Can. J. Chem. 1992. Vol. 70. P. 560. doi: 10.1139/v92-079
  109. Mardirossian N., Head-Gordon M. // Phys. Chem. Chem. Phys. 2014. Vol. 16. P. 9904. doi: 10.1039/C3CP54374A
  110. Vydrov O.A., Van Voorhis T. // J. Chem. Phys. 2010. Vol. 133. Art. 244103. doi: 10.1063/1.3521275
  111. Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. P. 580. doi: 10.1002/jcc.22885
  112. Zhang J., Lu T. // Phys. Chem. Chem. Phys. 2021. Vol. 23. P. 20323. doi: 10.1039/D1CP02805G
  113. Lu T. // J. Mol. Model. 2021. Vol. 27. P. 263. doi: 10.1007/s00894-021-04884-0
  114. Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. Vol. 14. P. 33. doi: 10.1016/0263-7855(96)00018-5
  115. Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., Wood P.A. // J. Appl. Cryst. 2020. Vol. 53. P. 226. doi: 10.1107/S1600576719014092

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».