HYDROTHERMAL SYNTHESIS OF AQUEOUS SOLS OF NANOCRYSTALLINE HAFNIUM DIOXIDE STABILIZED BY LACTIC ACID AND THEIR ENZYME-LIKE ACTIVITIES
- Autores: Taran G.S1, Sheichenko E.D1,2, Popkov M.A1, Novoselova K.N1,2, Kochenkova Y.A1,2, Filippova A.D1, Baranchikov A.E1,2, Ivanov V.K1,2
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- International Research University Higher School of Economics
- Edição: Volume 69, Nº 12 (2024)
- Páginas: 1763-1773
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/289009
- DOI: https://doi.org/10.31857/S0044457X24120092
- EDN: https://elibrary.ru/IWMMCM
- ID: 289009
Citar
Resumo
Palavras-chave
Sobre autores
G. Taran
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. Sheichenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
M. Popkov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
K. Novoselova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
Yu. Kochenkova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
A. Filippova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
A. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of Economics
Email: a.baranchikov@yandex.ru
Moscow, Russia
V. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; International Research University Higher School of EconomicsMoscow, Russia
Bibliografia
- Ramadoss A., Krishnamoorthy K., Kim S.J. // Mater. Res. Bull. 2012. V. 47. № 9. P. 2680. https://doi.org/10.1016/j.materresbull.2012.05.051
- Wang J., Li H.P., Stevens R. // J. Mater. Sci. 1992. V. 27. № 20. P. 5397. https://doi.org/10.1007/BF00541601
- Robertson J. // Eur. Phys. J. - Appl. Phys. 2004. V 28. P. 265. https://api.semanticscholar.org/CorpusID:28017611
- Bersuker G., Gilmer D.C., Veksler D. et al. // Tech. Dig. — Int. Electron Devices Meet. 2010. P. 456. https://doi.org/10.1109/IEDM.2010.5703394
- Yu S., Guan X., Wong H.S.P. // Appl. Phys. Lett. 2011. V. 99. № 6. P. 2011. https://doi.org/10.1063/1.3624472
- Lee H.Y., Chen Y.S., Chen P.S. et al. // IEEE Int. 2010. V. 55. № 1. P. 19.7.1. https://doi.org/10.1109/IEDM.2010.5703395
- Al-Kuhaili M.F., Durrani S.M.A., Bakhtiari I.A. et al. // Mater. Chem. Phys. 2011. V. 126. № 3. P. 515. https://doi.org/10.1016/j.matchemphys.2011.01.036
- Wang Y., Lin Z., Cheng X. et al. // Appl. Surf. Sci. 2004. V 228. № 1-4. P. 93. https://doi.org/10.1016/j.apsusc.2003.12.028
- Adam J., Rogers M.D. // Acta Crystallogr. 1959. V. 12. № 11. P. 951. https://doi.org/10.1107/s0365110x59002742
- Curtis C.E., Doney L.M., Johnson J.R. // J. Am. Ceram. Soc. 1954. V. 37.№ 10. P. 458. https://doi.org/10.1111/j.1151-2916.1954.tb13977.x
- Ruh R., Garrett H.J., Domagala R.F. et al. // J. Am. Ceram. Soc. 1968. V. 51.№ 1. P. 23.
- Guskov V.N., Gagarin P.G., Guskov A.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64.№ 11. P. 1436. https://doi.org/10.1134/S0036023619110068
- Folomeikin Y.I., Karachevtsev F.N., Stolyarova V.L. // Russ. J. Inorg. Chem. 2019. V. 64. № 7. P. 934. https://doi.org/10.1134/S0036023619070088
- Chaubey G.S., Yao Y., Makongo J.P.A. et al. // RSC Adv. 2012. V. 2. № 24. P. 9207. https://doi.org/10.1039/c2ra21003g
- Giacobbe J., Dunning D.N. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 467. https://doi.org/10.13182/nse58-a25543
- Cunningham G.W., Foulds A.K., Keller D.L. et al. // Nucl. Sci. Eng. 1958. V. 4. № 3. P. 449. https://doi.org/10.13182/nse58-a25541
- Field J.A., Luna-Velasco A., Boitano S.A. et al. // Chemosphere. 2011. V. 84.№ 10. P. 1401. https://doi.org/10.1016/j.chemosphere.2011.04.067
- Bagley A.F., Ludmir E.B., Maitra A. et al. // Clin. Transl. Radiat. Oncol. 2022. V. 33. P. 66. https://doi.org/10.1016/j.ctro.2021.12.012
- Maggiorella L., Barouch G., Devaux C. et al. // Futur. Oncol. 2012. V. 8. № 9. P. 1167. https://doi.org/10.2217/fon.12.96
- Shcherbakov A.B., Ivanov V.K., Zholobak N.M. et al. // Biophysics (Oxf). 2011. V. 56.№6. P. 987. https://doi.org/10.1134/S0006350911060170
- Shcherbakov A.B., Zholobak N.M., Spivak N.Y. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 13. P. 1556. https://doi.org/10.1134/S003602361413004X
- Ivanova O.S., Shekunova T.O., Ivanov V.K. et al. // Dokl. Chem. 2011. V. 437. № 2. P. 103. https://doi.org/10.1134/S0012500811040070
- Ivanov V.K., Polezhaeva O.S., Shaporev A.S. et al. // Russ. J. Inorg. Chem. 2010. V. 55.№ 3. P. 328. https://doi.org/10.1134/S0036023610030046
- Stefanic G., Music S., Molcanov K. // J. Alloys Compd. 2005. V 387. № 1-2. P. 300. https://doi.org/10.1016/j.jallcom.2004.06.064
- De Roo J., De Keukeleere K., Feys J. et al. // J. Nanoparticle Res. 2013. V. 15. № 7. https://doi.org/10.1007/s11051-013-1778-z
- Tirosh E., Markovich G. // Adv. Mater. 2007. V. 19. № 18. P. 2608. https://doi.org/10.1002/adma.200602222
- Qi J., Zhou X. // Colloids Surf. A Physicochem. Eng. Asp. 2015. V. 487. P. 26. https://doi.org/10.1016/j.colsurfa.2015.09.037
- Filippova A.D., Baranchikov A.E., Ivanov V.K. // Colloid J. 2023. V. 85. № 5. P. 782. https://doi.org/10.1134/S1061933X23600653
- Elmowafy E.M., Tiboni M., Soliman M.E. // Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Singapore: Springer, 2019. https://doi.org/10.1007/s40005-019-00439-x
- Yapryntsev A.D., Baranchikov A.E., Churakov A.V. et al. // RSC Adv. 2021. V. 11.№ 48. P. 30195. https://doi.org/10.1039/d_1ra05923h
- Dhup S., Kumar Dadhich R., Ettore Porporato P. et al. // Curr. Pharm. Des. 2012. V. 18.№ 10. P. 1319. https://doi.org/10.2174/138161212799504902
- Apostolova P., Pearce E.L. // Trends Immunol. 2022. V. 43. № 12. P. 969. https://doi.org/10.1016/j.it.2022.10.005
- Hirschhaeuser F., Sattler U.G.A., Mueller-Klieser W. // Cancer Res. 2011. V. 71.№ 22. P. 6921. https://doi.org/10.1158/0008-5472.CAN-11-1457
- Pohanka M. // Biomed Res. Int. 2020. V. 2020. https://doi.org/10.1155/2020/3419034
- Kakihana M., Kobayashi M., Tomita K. et al. // Bull. Chem. Soc. Jpn. 2010. V. 83.№ 11. P. 1285. https://doi.org/10.1246/bcsj.20100103
- Rose J., De Bruin T.J.M., Chauveteau G. et al. // J. Phys. Chem. B. 2003. V. 107. № 13. P. 2910. https://doi.org/10.1021/jp027114c
- Meskin P.E., Gavrilov A.I., Maksimov V.D. et al. // Russ. J. Inorg. Chem. 2007. V. 52. № 11. P. 1648. https://doi.org/10.1134/S0036023607110022
- Ivanov V.K., Baranchikov A.E., Tret’yakov Y.D. // Russ. J. Inorg. Chem. 2010. V. 55. № 5. P. 665. https://doi.org/10.1134/S0036023610050037
- Hudak B.M., Depner S.W., Waetzig G.R. et al. // Nat. Commun. 2017. V. 8. № May. P. 1. https://doi.org/10.1038/ncomms15316
- Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
- Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/RCR4920
- Таран Г.С., Баранчиков А.Е., Иванова О.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 6. С. 725. https://doi.org/10.31857/s0044457x20060239
- Baranchikov A.E., Sozarukova M.M., Mikheev I.V. etal.//NewJ. Chem. 2023. V. 47. № 44. P. 20388. https://doi.org/10.1039/D3NJ03728B
- Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. // Molecules. 2023. V. 28. № 9. https://doi.org/10.3390/molecules28093811
- Teplonogova M.A., Volostnykh M.V., Yapryntsev A.D. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. https://doi.org/10.3390/ijms232315373
- Qin L., Hu Y., Wei H. // Nanozymes: Preparation and Characterization. 2020. P. 79. https://doi.org/10.1007/978-981-15-1490-6_4
- Vladimirov Y.A., Proskurnina E.V. // Biochem. 2009. V. 74. № 13. P. 1545. https://doi.org/10.1134/S0006297909130082
- Deng M., Xu S., Chen F. // Anal. Methods. 2014. V. 6. № 9. P. 3117. https://doi.org/10.1039/c3ay42135j
- Li C., Shi X., Shen Q. et al. //J. Nanomater. 2018. V. 2018. https://doi.org/10.1155/2018/4857461
- Giussani A., Farahani P., Martnez-Munoz D. et al. // Chem. -AEur.J. 2019. V. 25.№ 20. P. 5202. https://doi.org/10.1002/chem.201805918
- Zhao H., Dong Y., Jiang P. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 12. P. 6451. https://doi.org/10.1021/acsami.5b00023
- Liang X., Han L. // Adv. Funct. Mater. 2020. V. 30. № 28. https://doi.org/10.1002/adfm.202001933
- Aggarwal P., Rana J.S., Chitkara M. et al. // J. Clust. Sci. 2024. V. 35. № 6. P. 2093. https://doi.org/10.1007/s10876-024-02646-5
- Ray C., Dutta S., Sarkar S. et al. // J. Mater. Chem. B. 2014. V. 2.№ 36. P. 6097. https://doi.org/10.1039/C4TB00968A
- Liu P., Liang M., Liu Z. et al. // Nanoscale. 2024. V. 16. №2. P. 913. https://doi.org/10.1039/D3NR04336C
- Sobanska K., Pietrzyk P., Sojka Z. // ACS Catal. 2017. V. 7. № 4. P. 2935. https://doi.org/10.1021/acscatal.7b00189
- Sommers J.A., Hutchison D.C., Martin N.P. et al. // Inorg. Chem. 2021. V. 60. № 3. P. 1631. https://doi.org/10.1021/acs.inorgchem.0c03128
- Aoto H., Matsui K., Sakai Y. et al. // J. Mol. Catal. A: Chem. 2014. V. 394. P. 224. https://doi.org/10.1016/j.molcata.2014.07.020
- Moons J., de Azambuja F., Mihailovic J. et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 23. P. 9094. https://doi.org/10.1002/anie.202001036
Arquivos suplementares
