INVESTIGATION OF THE REDUCTION PROCESS OF URANIUM OXIDE UO3 TO UO2 FOR CERAMIC NUCLEAR FUEL PRODUCTION
- Authors: Ivanov N.P1,2, Shichalin O.O1,2, Tsygankov D.K1, Shurygin A.V1, Barkhudarov K.V1,3, Lembikov A.O1, Rastorguev V.L1, Azon S.A1, Buravlev I.Y.1, Tananaev I.G1,4, Papynov E.K1
-
Affiliations:
- Far Eastern Federal University
- Sakhalin State University
- Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
- Kola Science Center, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Russian Academy of Sciences
- Issue: Vol 70, No 11 (2025)
- Pages: 1677–1684
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://ogarev-online.ru/0044-457X/article/view/378196
- DOI: https://doi.org/10.7868/S3034560X25110259
- ID: 378196
Cite item
Abstract
About the authors
N. P Ivanov
Far Eastern Federal University; Sakhalin State University
Email: ivanov.np@dvfu.ru
Vladivostok, Russia; Yuzhno-Sakhalinsk, Russia
O. O Shichalin
Far Eastern Federal University; Sakhalin State UniversityVladivostok, Russia; Yuzhno-Sakhalinsk, Russia
D. K Tsygankov
Far Eastern Federal UniversityVladivostok, Russia
A. V Shurygin
Far Eastern Federal UniversityVladivostok, Russia
K. V Barkhudarov
Far Eastern Federal University; Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of SciencesVladivostok, Russia; Vladivostok,Russia
A. O Lembikov
Far Eastern Federal UniversityVladivostok, Russia
V. L Rastorguev
Far Eastern Federal UniversityVladivostok, Russia
S. A Azon
Far Eastern Federal UniversityVladivostok, Russia
I. Yu Buravlev
Far Eastern Federal UniversityVladivostok, Russia
I. G Tananaev
Far Eastern Federal University; Kola Science Center, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials, Russian Academy of SciencesVladivostok, Russia; Apatity, Russia
E. K Papynov
Far Eastern Federal UniversityVladivostok, Russia
References
- Galashev A.Y., Zaikov Y.P. // Electrochim. Acta 2025. V. 518. P. 145823. https://doi.org/10.1016/j.electacta.2025.145823
- Youssef W.M., Hussein A.E.M., Taha M.H. et al. // Russ. J. Inorg. Chem. 2022. V. 67. N. 7. P. 1058. https://doi.org/10.1134/S0036023622070245
- Drankov A.N., Balybina V.A., Lembikov A.O. et al. // Russ. J. Inorg. Chem. 2025. V. 70. N. 3. P. 422. https://doi.org/10.1134/S0036023625600261
- Turanov A.N., Karandashev V.K., Khvostikov V.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. N. 12. P. 2045. https://doi.org/10.1134/S0036023622601416
- Papynov E.K., Shichalin O.O., Buravlev I.Y. et al. // J. Alloys Compd. 2021. V. 877. P. 160266. https://doi.org/10.1016/j.jallcom.2021.160266
- Papynov E.K., Shichalin O.O., Buravlev I.Y. et al. // J. Alloys Compd. 2021. V. 854. P. 155904. https://doi.org/10.1016/j.jallcom.2020.155904
- Papynov E.K., Shichalin O.O., Belov A.A. et al. // Nucl. Eng. Technol. 2020. V. 52. N. 8. P. 1756. https://doi.org/10.1016/j.net.2020.01.032
- Yu X., Yan C., Huang H. et al. // Ann. Nucl. Energy 2022. V. 171. P. 109044. https://doi.org/10.1016/j.anucene.2022.109044
- Vauchy R., Robisson A.-C., Audubert F. et al. // Ceram. Int. 2014. V. 40. N. 7. P. 10991. https://doi.org/10.1016/j.ceramint.2014.03.104
- Kim D.-J., Kim K.S., Kim D.S. et al. // Nucl. Eng. Technol. 2018. V. 50. N. 2. P. 253. https://doi.org/10.1016/j.net.2017.12.008
- Stepanov S.I., Boyarintsev A.V., Vazhenkov M.V. et al. // Russ. J. Gen. Chem. 2011. V. 81. N. 9. P. 1949. https://doi.org/10.1134/S1070363211090404
- Margueret A., Balice L., Popa K. et al. // J. Eur. Ceram. Soc. 2022. V. 42. N. 13. P. 6056. https://doi.org/10.1016/j.jeurceramsec.2022.05.070
- Papynov E.K., Shichalin O.O., Yu Mironenko A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 307. N. 1. P. 012029. https://doi.org/10.1088/1757-899X/307/1/012029
- Papynov E.K., Shichalin O.O., Mironenko A.Y. et al. // Radiochemistry. 2018. V. 60. N. 4. P. 362. https://doi.org/10.1134/S1066362218040045
- Guillon O., Gonzalez-Julian J., Dargatz B. et al. // Adv. Eng. Mater. 2014. V. 16. N. 7. P. 830. https://doi.org/10.1002/adem.201300409
- Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. // J. Mater. Sci. 2006. V. 41. N. 3. P. 763. https://doi.org/10.1007/s10853-006-6555-2
- Kulyako Y.M., Trofimov T.I., Samsonov M.D. et al. // Radiochemistry. 2015. V. 57. N. 2. P. 127. https://doi.org/10.1134/S1066362215020034
- Pilyushenko K.S., Vinokurov S.E., Kulyako Y.M. et al. // Radiochemistry. 2021. V. 63. N. 2. P. 156. https://doi.org/10.1134/S106636221020041
- Olsen A.M., Schwerdt I.J., Richards B. et al. // J. Nucl. Mater. 2018. V. 508. P. 574. https://doi.org/10.1016/j.jnucmat.2018.06.025
- Rousseau G., Desgranges L., Charlot F. et al. // J. Nucl. Mater. 2006. V. 355. N. 1-3. P. 10. https://doi.org/10.1016/j.jnucmat.2006.03.015
- Michak M., Ideker F.C., Kohlmann H. // Chem. A Eur. J. 2025. V. 31. N. 34. P. 1. https://doi.org/10.1002/chem.202500978
- Bazarkina E.F., Bauters S., Watier Y. et al. // Commun. Mater. 2025. V. 6. N. 1. https://doi.org/10.1038/s43246-025-00795-2
- Volgin M.I., Kulyukhin S.A., Nevolin Y.M. // Radiochemistry. 2023. V. 65. N. 6. P. 628. https://doi.org/10.1134/S1066362223060024
- Milena-Perez A., Rodriguez-Villagra N., Feria F. et al. // Prog. Nucl. Energy 2023. V. 165. P. 104914. https://doi.org/10.1016/j.pnucene.2023.104914
- Idriss H. // Surf. Sci. Rep. 2010. V. 65. N. 3. P. 67. https://doi.org/10.1016/j.surfrep.2010.01.001
- Guo X., Wu D., Xu H. et al. // J. Nucl. Mater. 2016. V. 478. P. 158. https://doi.org/10.1016/j.jnucmat.2016.06.014
- Mathubala G., Manikandan A., Arul Antony S. et al. // J. Mol. Struct. 2016. V. 1113. P. 79. https://doi.org/10.1016/j.molstruc.2016.02.032
- Elorrieta J.M., Bonales L.J., Rodriguez-Villagra N. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. N. 40. P. 28209. https://doi.org/10.1039/c6cp03800j
Supplementary files


