INFLUENCE OF CHIRALITY ON SPIN TRANSPORT IN GaN (8, n2) NANOTUBES
- Authors: Merinov V.B1,2, Kulyamin P.A1,2, D'yachkov P.N2
-
Affiliations:
- National Research Nuclear University "MEPhI"
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Issue: Vol 70, No 11 (2025)
- Pages: 1578-1591
- Section: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://ogarev-online.ru/0044-457X/article/view/378186
- DOI: https://doi.org/10.7868/S3034560X25110151
- ID: 378186
Cite item
Abstract
About the authors
V. B Merinov
National Research Nuclear University "MEPhI"; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: Merinov.V.B@gmail.com
Moscow, Russia; Moscow, Russia
P. A Kulyamin
National Research Nuclear University "MEPhI"; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia; Moscow, Russia
P. N D'yachkov
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
References
- Копцева Т.С., Баранов Е.В., Федюшкин И.Л. // Коорд. хим. 2024. Т. 50. № 3 С. 149. https://doi.org/10.31857/S0132344X24030013
- Li Z.J., Chen X.L., Li H.J. et al. // Appl. Phys. A. 2001. V. 72. P. 629. https://doi.org/10.1007/s003390100796
- Dong J.-J. // Appl. Phys. A. 2013. V. 113. P. 339. https://doi.org/10.1007/s00339-013-7937-3
- Zhu C.F., Fong W.K., Leung B.H. et al. // Appl. Phys. A. 2001. V. 72. P. 495. https://doi.org/10.1007/s003390100797
- Кондратьева О.Н., Стогний А.И., Новицкий Н.Н. и др. // Журн. неорган. химии. 2016. Т. 61. № 9. С. 1136. https://doi.org/10.7868/s0044457x16090105
- Yuan J., Wang K., Hou Y. et al. // Photonics. 2023. V. 10. P. 544. https://doi.org/10.3390/photonics10050544
- Han W. et al. // Science. 1997. V. 277. P. 1287. https://doi.org/10.1126/science.277.5330.1287
- Li S., Waag A. // J. Appl. Phys. 2012. V. 111. P. 071101. https://doi.org/10.1063/1.3694674
- Jatkar M., Jha K.K., Patra S.K. // Appl. Phys. A. 2021. V. 127. P. 418. https://doi.org/10.1007/s00339-021-04536-3
- Camacho-Mojica D.C., López-Urias F. // Sci. Rep. 2015. V. 5. https://doi.org/10.1038/srep17902
- Khaddeo K.R., Srivastava A., Kurchania R. // J. Comput. Theor. Nanosci. 2013. V. 10. P. 2066. https://doi.org/10.1166/jctn.2013.3169
- Pinhal G.B., Marana N.L., Fabris G.S.L. et al. // Theor. Chem. Acc. 2019. V. 138. https://doi.org/10.1007/s00214-019-2418-1
- Lee S.M., Lee Y.H., Hwang Y.G. et al. // Phys. Rev. B. 1999. V. 60. P. 7788. https://doi.org/10.1103/physrevb.60.7788
- Sodré J.M., Longo E., Taft C.A. et al. // C. R. Chim. 2016. V. 20. P. 190. https://doi.org/10.1016/j.crci.2016.05.023
- Xu B., Pan B.C. // Phys. Rev. B. 2006. V. 74. P. 245402. https://doi.org/10.1103/physrevb.74.245402
- Chen G.-X., Zhang Y., Wang D.-D. et al. // Physica E. 2010. V. 43. P. 22. https://doi.org/10.1016/j.physse.2010.06.039
- Chen G.-X., Zhang Y., Wang D.-D. et al. // Solid State Commun. 2011. V. 151. P. 139. https://doi.org/10.1016/j.ssc.2010.11.002
- Yang S.-H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- Gutierrez R., Díaz E., Gaul C. et al. // J. Phys. Chem. C. 2013. V. 117. P. 22276. https://doi.org/10.1021/jp401705x
- Marrows C.H., Zeissler K. // Appl. Phys. Lett. 2021. V. 119. P. 250502. https://doi.org/10.1063/5.0072735
- Nan T., Ralph D.C., Tsymbal E.Y. et al. // APL Mater. 2021. V. 9. P. 120401. https://doi.org/10.1063/5.0076924
- Kurpas M. // Phys. Rev. B. 2023. V. 108. P. 195408. https://doi.org/10.1103/physrevb.108.195408
- Liu H. // Physica B. 2011. V. 406. P. 104. https://doi.org/10.1016/j.physb.2010.10.031
- McGlynn S.P., Sunseri R., Christodouleas N. // J. Chem. Phys. 1962. V. 37. P. 1818. https://doi.org/10.1063/1.1733374
- Chen K., Zhang S. // Phys. Rev. Lett. 2015. V. 114. P. 126602. https://doi.org/10.1103/physrevlett.114.126602
- Manchon A., Zelezny J., Miron T.M. et al. // Rev. Mod. Phys. 2019. V. 91. P. 035004. https://doi.org/10.1103/revmodphys.91.035004
- Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. https://doi.org/10.1002/adma.202002117
- Fu J.Y., Wu M.W. // J. Appl. Phys. 2008. V. 104. https://doi.org/10.1063/1.3018600
- Srivastava A., Khan M.I., Tyagi N. et al. // Sci. World J. 2014. https://doi.org/10.1155/2014/984591
- Hao S., Zhou G., Wu J. et al. // Phys. Rev. B. 2004. V. 69. https://doi.org/10.1103/physrevb.69.113403
- Saberi S.H., Baizae S.M., Kahnouji H. // Superlattices Microstruct. 2014. V. 74. P. 52. https://doi.org/10.1016/j.spmi.2014.05.013
- Li J.Y., Chen X.L., Qiao Z.Y. et al. // J. Mater. Sci. Lett. 2001. V. 20. P. 1987. https://doi.org/10.1023/a:101355323435
- Goldberger J., He R., Zhang Y. et al. // Nature. 2003. V. 422. P. 599. https://doi.org/10.1038/nature01551
- Hemmingsson C., Pozina G., Khromov S. et al. // Nanotechnology. 2011. V. 22. P. 085602. https://doi.org/10.1088/0957-4484/22/8/085602
- D'yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. https://doi.org/10.1103/physrevb.76.195411
- D'yachkov P., Makaev D. // Int. J. Quantum Chem. 2015. V. 116. P. 316. https://doi.org/10.1002/qua.25030
- D'yachkov P.N. Quantum chemistry of nanotubes: electronic cylindrical waves. London: CRC Press, 2019.
- Slater J.C. // Phys. Rev. 1937. V. 51. P. 846. https://doi.org/10.1103/physrev.51.846
- Andersen O.K. // Phys. Rev. B. 1975. V. 12. P. 3060. https://doi.org/10.1103/physrevb.12.3060
- Koelling D.D., Arbman G.O. // J. Phys. F: Met. Phys. 1975. V. 5. P. 2041. https://doi.org/10.1088/0305-4608/5/11/016
- Дьячков П.Н., Дьячков Е.П. // Журн. неорган. химии. 2025. Т. 70. № 6. С. 813. https://doi.org/10.31857/S0044457X25060099
- Дьячков П.Н., Кулямин П.А. // Журн. неорган. химии. 2024. Т. 69. № 9. С. 1319. https://doi.org/10.31857/S0044457X24090125
- Дьячков П.Н., Меринов В.Б., Кулямин П.А. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 757. https://doi.org/10.31857/S0044457X24050145
- Дьячков П.Н., Ломакин Н.А. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 492. https://doi.org/10.31857/S0044457X2260181X
- Levămäki H., Vitos L. // Phys. Rev. B. 2021. V. 103. P. 035118. https://doi.org/10.1103/physrevb.103.035118
- McMahan A.K. // Phys. Rev. B. 1984. V. 30. P. 5835. https://doi.org/10.1103/physrevb.30.5835
- Vitos L. The Exact Muffin-Tin Orbitals Method and Applications. Budapest: MTA SZFK1, 2008.
- Vitos L., Skriver H.L., Johansson B. et al. // Comput. Mater. Sci. 2000. V. 18. P. 24. https://doi.org/10.1016/s0927-0256(99)00098-1
- Kunstmann J. Density Functional and Linear Response Studies of sp Materials. Stuttgart: Universitat Stuttgart, 2008.
- Vitos L. // Phys. Rev. B. 2001. V. 64. P. 014107. https://doi.org/10.1103/physrevb.64.014107
- Дьячков П.Н. Электронные свойства и применение нанотрубок. М.: Бином. Лаб. знаний, 2012.
- Lambrecht W.R.L., Segall B., Strite S. et al. // Phys. Rev. B. 1994. V. 50. P. 14155. https://doi.org/10.1103/physrevb.50.14155
- Park Y.S., Lee G., Holmes M.J. et al. // Nano Lett. 2015. V. 15. P. 4472. https://doi.org/10.1021/acs.nanolett.5b00924
- Ильясов В.В., Жданова Т.П., Никифоров И.Я. // Журн. структ. химии. 2007. T. 48. № 1. C. 67. https://doi.org/10.17516/1998-2486-2007-48-1-67-72
- Fransson J. // J. Phys. Chem. Lett. 2022. V. 13. P. 808. https://doi.org/10.1021/acs.jpclett.1c03925
Supplementary files


