NOVEL PHOTOSENSITIZERS BASED ON CATIONIC meso-ARYLPORPHYRINS WITH THE EXTENDED π-SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New photosensitizers based on cationic porphyrins with an extended π-system have been synthesized. The synthetic strategy involves the use of the Sonogashira cross-coupling reaction to form a conjugated π-system of the macrocycle. The obtained compounds exhibit an absorption peak at 660 nm with an extinction coefficient of ~60 000 M–1 cm–1; the singlet oxygen quantum yield and the 1-octanol/water partition coefficient were also determined. Absorption in the near-infrared region allows considering the obtained compounds as potential photosensitizers for photodynamic therapy.

About the authors

I. O Savelyeva

MIREA- Russian University of Technology, Institute of Fine Chemical Technology

Email: inga.saveleva.96@mail.ru
Moscow, Russia

V. A Govor

MIREA- Russian University of Technology, Institute of Fine Chemical Technology

Moscow, Russia

K. A Zhdanova

MIREA- Russian University of Technology, Institute of Fine Chemical Technology

Moscow, Russia

N. A Bragina

MIREA- Russian University of Technology, Institute of Fine Chemical Technology

Moscow, Russia

References

  1. Singh P.P., Sinha S., Gahtori P. et al. // Dyes Pigm. 2024. V. 229. P. 112262. https://doi.org/10.1016/j.dyepig.2024.112262.
  2. Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles. 2022. V. 15. № 4. P. 311. https://doi.org/10.6060/mhc224870k
  3. Fang L., Chen Z., Dai J. et al // Adv. Sci. 2025. P. 2409157 https://doi.org/10.1002/advs.202409157
  4. Bortnevskaya Y.S., Malikova V.A., Karpechenko N.Yu. et al. // Mendeleev Commun. 2024. V. 34. P. 685. https://doi.org/10.1016/j.mencom.2024.09.019
  5. Correia J.H., Rodrigues J.A., Pimenta S. et al. // Pharmaceutics. 2021. V. 13. P. 1332. https://doi.org/10.3390/pharmaceutics13091332
  6. Hu W., Prasad P.N., Huang W. // Acc. Chem. Res. 2021. V. 54. № 3. P. 697. https://doi.org/10.1021/acs.accounts.0c00688
  7. Celli J.P., Spring B.Q., Rizvi I. et al. // Chem. Rev. 2010. V. 110. № 5. P. 2795. https://doi.org/10.1021/cr900300p
  8. Nguyen V.-N., Yan Y., Zhao J. et al // Acc. Chem. Res. 2021. V. 54. № 1. P. 207. https://dx.doi.org/10.1021/acs.accounts.0c00606
  9. Oluwajembola A.M., Cleanclay W.D., Onyia A.F. et al. // Results Chem. 2024. 10. P. 101715. https://doi.org/10.1016/j.rechem.2024.101715
  10. Капинус В.Н., Каплан М.А., Ярославцева-Исаева Е.В. и др. // Исследования и практика в медицине. 2021. V. 8. №4. P. 33. https://doi.org/10.17709/2410-1893-2021-8-4-3
  11. Zhidomorov N.Yu., Nazarenko O.A., Demidov VI. et al. // Biomedical Photonics. 2022. V. 11. № 2. P. 23. https://doi.org/10.24931/2413-9432-2022-11-2-23-32
  12. Kirin N.S., Ostroverkhov P.V., Usachev M.N. et al. // Fine Chemical Technologies. 2024. V. 19. P. 310. https://doi.org/10.32362/2410-6593-2024-19-4-310-326
  13. Иен Ч. Т. Х., Раменская Г.В., Оборотова Н.А. // Российский биотераветический журнал. 2009. № 4. Т. 8. С. 99. https://doi.org/10.17816/RFJ77995.
  14. Pucelik B., Sulek A., Dąbrowski J.M. // Coord. Chem. Rev. 2020. V. 416. P. 213340. https://doi.org/10.1016/j.ccr.2020.213340
  15. Bagrov I.V., Dadeko A.V., Kiselev V.M. et al. // Opt. Spectrosc. 2018. V. 125. P. 911. https://doi.org/10.1134/S0030400X1902005X
  16. Akbar A., Khan S., Chatterjee T. et al. // J. Photochem. Photobiol. B: Biology 2023. V. 248. P. 112796. https://doi.org/10.1016/j.jphotobiol.2023.112796
  17. Vyalba F.Yu., Ivantsova A.V., Zhdanova K.A. et al. // Mendeleev Commun. 2022. V. 32. P. 675. https://doi.org/10.1016/j.mencom.2022.09.036
  18. Pereira M.M., Abreu A.R., Goncalves N.P.F. et al. // Green Chem. 2012. V. 14. P. 1666. https://doi.org/10.1039/C2GC35126A
  19. Brückner C. // Acc. Chem. Res. 2016. V. 49. P. 1080. https://doi.org/10.1021/acs.accounts.6b00043.
  20. Silva A.M.G., Tome A.C., Neves M.G.P.M.S. et al. // Tetrahedron Lett. 2002. V. 43. P. 603. https://doi.org/10.1016/S0040-4039(01)02243-2
  21. Sobotta L., Sniechowska J., Ziental D. et al. // Dyes Pigm. 2019. V. 160. P. 292. https://doi.org/10.1016/j.dyepig.2018.08.004
  22. Негримовский В.М., Макарова Е.А., Михаленко С.А. и др. // Российский химический журнал. 2013. V. 57. № 2. P. 31.
  23. Polevaya Y.P., Tyurin V.S., Beletskaya I.P. // J. Porphyr. Phthalocyanines. 2014. V. 18. P. 20. https://doi.org/10.1142/S1088424613500636
  24. Zhdanova K.A., Zaytsev A.A., Gradova M.A. et al. // Inorganics. 2023. V. 11. P. 415. https://doi.org/10.3390/inorganics11100415
  25. Li Q., Li C., Xie Y. et al. // Mater. Chem. Front. 2024. V. 8. P. 652. https://doi.org/10.1039/D3QM00770G
  26. Gazvoda M., Virant M., Pinter B. et al. // Nat. Commun. 2018. V. 9. P. 4814. https://doi.org/10.1038/s41467-018-07081-5
  27. Zielonka J., Joseph J., Sikora A. et al. // Chem. Rev. 2017. V. 117. P. 10043. https://doi.org/10.1021/acs.chemrev.7b00042
  28. Zhdanova K.A., Savel'eva I.O., Usanev A.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1756. https://doi.org/10.1134/s0036023622601209
  29. Godlewski B., Baran D., de Robichon M. et al. // Org. Chem. Front. 2022. V. 9. P. 2396. https://doi.org/10.1039/D1QO01909K
  30. Ormond A.B., Freeman H.S. // Dyes and Pigm. 2013. V. 96. P. 440. https://doi.org/10.1016/j.dyepig.2012.09.011

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Дополнительные материалы к статье
Download (2MB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).