SYNTHESIS, CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF Y3-x(CeBi)xFe3.5Ga1.5O12 SOLID SOLUTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Solid solutions based on yttrium iron garnets containing both bismuth and cerium ions in the crystal lattice were obtained for the first time using gel combustion with polyvinyl alcohol as fuel. Substitution of Ce3+ ions for yttrium is 0.15 formula units, while substitution with Bi3+ is 0.7 and 1.0 formula units. The gels formed during the synthesis were studied using FTIR spectroscopy, and the main functional groups involved in gel structure formation were identified. A study of the magnetic properties of Y3-x(CeBi)xFe3.5Ga1.5O12 solid solutions allowed us to establish the dependence of the specific magnetization, average magnetic moment, and magnetic ordering temperature on the bismuth and cerium ion content in the garnet.

About the authors

M. N Smirnova

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: smirnovamn@igic.ras.ru
Moscow, Russia

E. S Romanova

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

G. E Nikiforova

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

L. V Goeva

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

O. N Kondratyeva

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

V. A Ketsko

N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

References

  1. Shen H., Zhao Yu, Lia L. et al. // J. Cryst. Growth. 2024. V. 631. P. 127626. https://doi.org/10.1016/j.jcrysgro.2024.127626
  2. Saini J., Sharmaab M., Kumar B. // Nanoscale Adv. 2021. V. 3. P. 6074. https://doi.org/10.1039/d1na00227a
  3. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys. Condens. Matter. 2021. V. 33. P. 413001. https://doi.org/10.1088/1361-648X/abec1a
  4. Kuila M., Sagdeo A., Longchar L.A. // J. Appl. Phys. 2022. V. 131. P. 203901. https://doi.org/10.1063/5.0085572
  5. Звездин А.К., Котов В.А. Современная магнитооптика и магнитооптические материалы. Бока-Ратон: CRC Press, 1997. 404 с. https://doi.org/10.1887/075030362X
  6. Wu J., Fan Z., Xiao D. et al. // Prog. Mater. Sci. 2016. V. 84. P. 335. https://doi.org/10.1016/J.PMATSCI.2016.09.001
  7. Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.
  8. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009. https://doi.org/10.3367/UFNr.2019.07.038609
  9. Hwang J.-Y., Ferrera M., Razzari L. et. al. // Appl. Phys. Lett. 2010. V. 97. P. 161901. https://doi.org/10.1063/1.3502477
  10. Субботин И.А., Пашаев Э.М., Беляева А.О. и др. // Кристаллография. 2025. Т. 70. № 3. С. 529. https://doi.org/10.31857/S0023476125030206
  11. Smirnova M.N., Glazkova I.S., Nikiforova G.E. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2021. V. 12. N. 2. P. 210. https://doi.org/10.17586/2220-8054-2021-12-2-210-217
  12. Романова Е.С., Смирнова М.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1104. https://doi.org/10.31857/S0044457X24080022
  13. Нипан Г.Д., Смирнова М.Н., Никифорова Г.Е. // Неорган. материалы. 2019. Т. 55. № 9. C. 989. https://doi.org/10.1134/S0002337X19090100
  14. Gilleo M.A., Geller S. // Phys. Rev. 1958. V. 110. N. 1. P. 73. https://doi.org/10.1103/PhysRev.110.73
  15. Lisnevskay I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 397. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
  16. Dastjerdi O.D., Shokrollahi H., Yang H. // Ceram. Int. 2020. V. 46. P. 2709. https://doi.org/10.1016/j.ceramint.2019.09.261
  17. Xu H., Yang H. // J. Mater Sci: Mater Electron. 2008. V. 19. P. 589. https://doi.org/10.1007/s10854-007-9394-2
  18. Huang M., Zhang S. // Appl. Phys. A. 2002. V. 74. P. 177. https://doi.org/10.1007/s003390100883
  19. Sharm V., Kuanr B.K. // J. Alloys Compd. 2018. V. 748. P. 591. https://doi.org/10.1016/j.jallcom.2018.03.086
  20. Hsanpour A., Yarmohammdi Satri M. // World Appl. Sci. J. 2012. V. 17. N. 8. P. 947.
  21. Saini J., Yadav D., Sharma V. // IEEE Trans. Magn. 2021. V. 57. N. 2. P. 3014890. https://doi.org/10.1109/TMAG.2020.3014890
  22. Sekhar M.C., Hwang J., Ferrera M. // Appl. Phys. Lett. 2009. V. 94. P. 181916. https://doi.org/10.1063/1.3126640
  23. Khalifeh M.R., Shokrollahi H., Arab S.M., Yang H. // Mater. Chem. Phys. 2020. V. 247. P. 122838. https://doi.org/10.1016/j.matchemphys
  24. Нипан Г.Д., Смирнова М.Н., Копьева М.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1111. https://doi.org/10.1134/S0044457X19100106
  25. Gu B.X., Zhang H.Y., Wang H., Zhai H.R. // J. Magn. Magn. Mater. 1997. V. 168. P. 31. https://doi.org/10.1016/S0304-8853(96)00696-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).