LOW-TEMPERATURE SYNTHESIS OF SnO NANOSHEETS VIA CHEMICAL DEPOSITION: MORPHOLOGY, STRUCTURE, AND THERMAL STABILITY
- Authors: Solomatov I.A.1,2, Fisenko N.A.1, Simonenko N.P.1, Gorobtsov P.Y.1, Simonenko T.L.1, Simonenko E.P.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- National Research University "Higher School of Economics"
- Issue: Vol 70, No 11 (2025)
- Pages: 1456–1464
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/378174
- DOI: https://doi.org/10.7868/S3034560X25110033
- ID: 378174
Cite item
Abstract
About the authors
I. A. Solomatov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University "Higher School of Economics"
Email: ivsolomatov@yandex.ru
Moscow, Russia
N. A. Fisenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Ph. Yu. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
T. L. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
References
- Sivaramasubramaniam R., Muhamad M.R., Radhakrishna S. // Phys. Status Solidi A. 1993. V. 136. № 1. P. 215. https://doi.org/10.1002/pssa.2211360126
- Ogo Y., Hiramatsu H., Nomura K. et al. // Appl. Phys. Lett. 2008. V. 93. № 3. P. 1. https://doi.org/10.1063/1.2964197
- Pan X.Q., Fu L. // J. Electroceram. 2001. V. 7. № 1. P. 35. https://doi.org/10.1023/A:1012270927642
- Guo W., Fu L., Zhang Y. et al. // Appl. Phys. Lett. 2010. V. 96. № 4. P. 1. https://doi.org/10.1063/1.3277153
- Liang L.Y., Liu Z.M., Cao H.T. et al. // ACS Appl. Mater. Interfaces. 2010. V. 2. N. 4. P. 1060. https://doi.org/10.1021/am900838z
- Tsukazaki A., Ohtomo A., Onuma T. et al. // Nat. Mater. 2005. V. 4. N. 1. P. 42. https://doi.org/10.1038/nmat1284
- Kawazoe H., Yasukawa M., Hyodo H. et al. // Nature. 1997. V. 389. N. 6654. P. 939. https://doi.org/10.1038/40087
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines (Basel). 2023. V. 14. N. 4. P. 725. https://doi.org/10.3390/mi14040725
- Bazito F.F.C., Torresi R.M. // J. Braz. Chem. Soc. 2006. V. 17. N. 4. P. 627. https://doi.org/10.1590/S0103-50532006000400002
- Luo H., Liang L.Y., Cao H.T. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. N. 10. P. 5673. https://doi.org/10.1021/am301601s
- Чжоу Д., Чеканников А.А., Семененко Д.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1350. https://doi.org/10.31857/S0044457X22090021
- Wang L., Ji H., Zhu F. et al. // Nanoscale. 2013. V. 5. N. 16. P. 7613. https://doi.org/10.1039/c3nr00951c
- Iqbal M.Z., Wang F., Hussain R. et al. // Mater. Focus. 2014. V. 3. N. 2. P. 92. https://doi.org/10.1166/mat.2014.1147
- Pan X.Q., Fu L. // J. Appl. Phys. 2001. V. 89. N. 11. P. 6048. https://doi.org/10.1063/1.1368865
- Fan H., Reid S.A. // Chem. Mater. 2003. V. 15. N. 2. P. 564. https://doi.org/10.1021/cm0208509
- Forster M. // Energy. 2004. V. 29. N. 5-6. P. 789. https://doi.org/10.1016/S0360-5442(03)00185-3
- Soares M.R., Dionisio P.H., Baumvol I.J.R. et al. // Thin Solid Films. 1992. V. 214. N. 1. P. 6. https://doi.org/10.1016/0040-6090(92)90449-L
- Васильев А.А., Лагутин А.С., Набиев Ш.Ш. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1710. https://doi.org/10.31857/S0044457X20120193
- Zhu L., Yang H., Jin D. et al. // Inorg. Mater. 2007. V. 43. N. 12. P. 1307. https://doi.org/10.1134/S0020168507120102
- Sun G., Qi F., Li Y. et al. // Mater. Lett. 2014. V. 118. P. 69. https://doi.org/10.1016/j.matlet.2013.12.048
- Kumar B., Lee D.-H., Kim S.-H. et al. // J. Phys. Chem. C. 2010. V. 114. N. 25. P. 11050. https://doi.org/10.1021/jp101682v
- Hill M.S., Johnson A.L., Lowe J.P. et al. // Dalton Trans. 2016. V. 45. N. 45. P. 18252. https://doi.org/10.1039/C6DT02508K
- Wu D.-S., Han C.-Y., Wang S.-Y. et al. // Mater. Lett. 2002. V. 53. N. 3. P. 155. https://doi.org/10.1016/S0167-577X(01)00468-2
- Krishnakumar T., Pinna N., Kumari K.P. et al. // Mater. Lett. 2008. V. 62. N. 19. P. 3437. https://doi.org/10.1016/j.matlet.2008.02.062
- Moreno M.S., Mercader R.C., Bibiloni A.G. // J. Phys.: Condens. Matter. 1992. V. 4. N. 2. P. 351. https://doi.org/10.1088/0953-8984/4/2/004
- Xu X., Ge M., Stahl K. et al. // Chem. Phys. Lett. 2009. V. 482. N. 4-6. P. 287. https://doi.org/10.1016/j.cplett.2009.10.012
- Aliahmad M., Dehbashi M. // Iran. J. Energy Environment. 2013. V. 4. N. 1. P. 49. https://doi.org/10.5829/idosi.ijee.2013.04.01.08
- Liang Y., Zheng H., Fang B. // Mater. Lett. 2013. V. 108. P. 235. https://doi.org/10.1016/j.matlet.2013.07.016
- Wang S., Xie S., Li H. et al. // Chem. Commun. 2005. N. 4. P. 507. https://doi.org/10.1039/b414913k
- Dai Z.R., Pan Z.W., Wang Z.L. // Adv. Funct. Mater. 2003. V. 13. N. 1. P. 9. https://doi.org/10.1002/adfm.200390013
- Iqbal M.Z., Wang F., Javed Q. et al. // Mater. Lett. 2012. V. 75. P. 236. https://doi.org/10.1016/j.matlet.2012.01.126
- Uchiyama H., Imai H. // Cryst. Growth Des. 2007. V. 7. N. 5. P. 841. https://doi.org/10.1021/cg070205k
- Jia Z., Zhu L., Liao G. et al. // Solid State Commun. 2004. V. 132. N. 2. P. 79. https://doi.org/10.1016/j.ssc.2004.07.028
- Iqbal M.Z., Wang F., Rafi-ud-Din et al. // Mater. Lett. 2012. V. 78. P. 50. https://doi.org/10.1016/j.matlet.2012.03.056
- Orlandi M.O., Leite E.R., Aguiar R. et al. // J. Phys. Chem. B. 2006. V. 110. N. 13. P. 6621. https://doi.org/10.1021/jp057099m
- Sun Z., Liao T., Dou Y. et al. // Nat. Commun. 2014. V. 5. N. 1. P. 3813. https://doi.org/10.1038/ncomms4813
- Timmerman M.A., Xia R., Le P.T.P. et al. // Chem. - A Eur. J. 2020. V. 26. N. 42. P. 9084. https://doi.org/10.1002/chem.201905735
- Deng D., Novoselov K.S., Fu Q. et al. // Nat. Nanotechnol. 2016. V. 11. N. 3. P. 218. https://doi.org/10.1038/nnano.2015.340
- Stoller M.D., Park S., Zhu Y. et al. // Nano Lett. 2008. V. 8. N. 10. P. 3498. https://doi.org/10.1021/nl802558y
- Osada M., Sasaki T. // Adv. Mater. 2012. V. 24. N. 2. P. 210. https://doi.org/10.1002/adma.201103241
- ten Elshof J.E., Yuan H., Gonzalez Rodriguez P. // Adv. Energy Mater. 2016. V. 6. N. 23. P. 1600355. https://doi.org/10.1002/aenm.201600355
- Liu Y., Yamaguchi A., Yang Y. et al. // Angew. Chem. Int. Ed. 2023. V. 62. N. 17. P. e202300640. https://doi.org/10.1002/anie.202300640
- Phuong P.H., Hoa H.T.M., Hung N.H. et al. // ChemistrySelect. 2021. V. 6. N. 43. P. 12246. https://doi.org/10.1002/slct.20210281750
- Zhu Y., Yang L., Guo S. et al. // Materials. 2023. V. 16. N. 2. P. 792. https://doi.org/10.3390/ma16020792
- Janardhan E., Reddy M.M., Reddy P.V. et al. // World J. Nano Sci. Eng. 2018. V. 08. N. 02. P. 33. https://doi.org/10.4236/wjnse.2018.82002
- Sangaletti L., Depero L.E., Allieri B. et al. // J. Mater. Res. 1998. V. 13. N: 9. P. 2457. https://doi.org/10.1557/JMR.1998.0343
- Liu Q., Liang L., Cao H. et al. // J. Mater. Chem. C: Mater. 2015. V. 3. N: 5. P. 1077. https://doi.org/10.1039/C4TC02184C
- Wang X., Zhang F.X., Loa I. et al. // Phys. Status Solidi B. 2004. V. 241. N: 14. P. 3168. https://doi.org/10.1002/pssb.200405231
- Giefers H., Porsch F., Wortmann G. // Physica B: Condens Matter. 2006. V. 373. N: 1. P. 76. https://doi.org/10.1016/j.physb.2005.10.136
- Gao Y., Zhao X., Yin P. et al. // Sci Rep. 2016. V. 6. N: 1. P. 20539. https://doi.org/10.1038/srep20539
- Kuang X., Liu T., Wang W. et al. // Appl. Surf. Sci. 2015. V. 351. P. 1087. https://doi.org/10.1016/j.apsusc.2015.04.190
- Talebian N., Jafarinezhad F. // Ceram Int. 2013. V. 39. N: 7. P. 8311. https://doi.org/10.1016/j.ceramint.2013.03.101
- Haspulat B., Saribel M., Kamış H. // Arab. J. Chem. 2020. V. 13. N: 1. P. 96. https://doi.org/10.1016/j.arabjc.2017.02.004
- Li X., Liang L., Cao H. et al. // Appl. Phys. Lett. 2015. V. 106. N: 13. P. 132102. https://doi.org/10.1063/1.4916664
- Kripalani D.R., Sun P.-P., Lin P. et al. // Appl. Surf. Sci. 2021. V. 538. P. 147988. https://doi.org/10.1016/j.apsusc.2020.147988
Supplementary files


