АНАЛИЗ АНИОНА КЛОЗО-ДЕКАБОРАТА И ЕГО ПРОИЗВОДНЫХ МЕТОДОМ КАПИЛЛЯРНОГО ЗОННОГО ЭЛЕКТРОФОРЕЗА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Кластерные соединения бора представляют собой неорганические полиэдрические структуры, используемые в различных областях. Они обладают широким спектром биологической активности и являются перспективными соединениями для бор-нейтронозахватной терапии рака, поэтому для них требуется разработка различных аналитических методик качественного и количественного анализа и определения их свойств. Капиллярный электрофорез (КЭ) является интересным универсальным методом анализа заряженных веществ. Однако имеется довольно ограниченное количество исследований кластерных соединений бора с использованием КЭ. В данной работе сообщается о возможности технически простого метода капиллярного зонного электрофореза аниона клозо-декабората [B10H10]2− и некоторых его производных, а также [B12H12]2−. Показана возможность анализа анионов как при прямой, так и при обратной полярности в отсутствие модификаторов внутренней поверхности капилляра или покрытия стенок полимером. Определена электрофоретическая подвижность анализируемых соединений. Представленная работа является наглядным примером того, что капиллярный электрофорез может служить простым и удобным методом анализа растворимых и частично водорастворимых кластерных соединений бора.

Об авторах

А. В Калистратова

Российский химико-технологический университет им. Д.И. Менделеева

Email: a.kalistratova@inbox.ru
Москва, Россия

Д. В Новикова

Российский химико-технологический университет им. Д.И. Менделеева

Москва, Россия

А. С Кубасов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

К. Ю Жижин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Н. Т Кузнецов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Список литературы

  1. Mahfouz N., Ghaida F.A., El Hajj Z. et al. // Chemistryselect. 2022. V. 7. № 21. P. e202200770. https://doi.org/10.1002/slct.202200770
  2. Zhao X., Yang Z., Chen H. et al. // Coord. Chem. Rev. 2021. V. 444. P. 214042. https://doi.org/10.1016/j.ccr.2021.214042
  3. Mukherjee S., Thilagar P. // Chem. Commun. 2016. V. 52. № 6. P. 1070. https://doi.org/10.1039/c5cc08213g
  4. Guo L., Yu X., Tu D. et al. // Chem. A Eur. J. 2022. V. 28. № 33. P. e202200303. https://doi.org/10.1002/chem.202200303
  5. Nikiforova S.E., Khan N.A., Kubasov A.S. et al. // Crystals. 2023. V. 13. № 10. P. 1449. https://doi.org/10.3390/cryst13101449
  6. Korolenko S.E., Zhuravlev K.P., Tsaryuk V.I. et al. // J. Lumin. 2021. V. 237. P. 118156. https://doi.org/10.1016/j.jlumin.2021.118156
  7. Tong D., Wang H., Chen L. et al. // High Perform. Polym. 2019. V. 31. № 6. P. 694. https://doi.org/10.1177/0954008318788389
  8. Yue J., Li Y., Li H. et al. // Rsc. Adv. 2015. V. 5. № 119. P. 98010. https://doi.org/10.1039/c5ra15743a
  9. Turyshev E.S., Kopytin A.V., Zhizhin K.Y. et al. // Talanta. 2022. V. 241. P. 123239. https://doi.org/10.1016/j.talanta.2022.123239
  10. Kopytin A.V., Turyshev E.S., Kubasov A.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 1. P. 6. https://doi.org/10.1134/S0036023622700103
  11. Jacob L., Rzeszotarska E., Kaszyński P. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 32. P. 3083. https://doi.org/10.1002/ejic.202000456
  12. Leśnikowski Z.J. // Expert Opin. Drug Discov. 2016. V. 11. № 6. P. 569. https://doi.org/10.1080/17460441.2016.1174687
  13. Avdeeva V.V., Malinina E.A., Zhizhin K.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
  14. Das B.C., Nandwana N.K., Das S. et al. // Molecules. 2022. V. 27. № 9. P. 2615. https://doi.org/10.3390/molecules27092615
  15. Messner K., Vuong B., Tranmer G.K. // Pharmaceuticals. 2022. V. 15. № 3. P. 263. https://doi.org/10.3390/ph15030264
  16. Fink K., Uchman M. // Coord. Chem. Rev. 2021. V. 431. P. 213684. https://doi.org/10.1016/j.ccr.2020.213684
  17. Bogucka-Kocka A., Kołodziej P., Makuch-Kocka A. et al. // Chem. Commun. 2022. V. 58. № 15. P. 2528. https://doi.org/10.1039/d1cc07075d
  18. Wang S., Ren Y., Wang Z. et al. // Expert Opin. Drug Discov. 2022. V. 17. № 12. P. 1329. https://doi.org/10.1080/17460441.2023.2153829
  19. Barba-Bon A., Salluce G., Lostalé-Seijo I. et al. // Nature. 2022. V. 603. № 7902. P. 637. https://doi.org/10.1038/s41586-022-04413-w
  20. Hu X.-Y., Guo D.-S. // Angew. Chem. Int. Ed. 2022. V. 61. № 26. P. e202204979. https://doi.org/10.1002/anie.202204979
  21. Lesnikowski Z.J. // Collect. Czechoslov. Chem. Commun. 2007. V. 72. № 12. P. 1646. https://doi.org/10.1135/cccc20071646
  22. Purohit M., Kumar M. // Mater. Today Proc. 2022. https://doi.org/10.1016/j.matpr.2022.12.181
  23. Mahmoud B.S., Alamri A.H., McConville C. // Cancers (Basel). 2020. V. 12. № 1. P. 175. https://doi.org/10.3390/cancers12010175
  24. Fithroni A.B., Ohtsuki T., Matsuura E. et al. // Cells. 2022. V. 11. № 20. P. 3307. https://doi.org/10.3390/cells11203307
  25. Kaniowski D., Suwara J., Ebenryter-Olbińska K. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 14793. https://doi.org/10.3390/ijms232314793
  26. Plesek J. // Chem. Rev. 1992. V. 92. № 2. P. 269. https://doi.org/10.1021/cr00010a005
  27. Kumar R., Rathore A.S., Guttman A. // Electrophoresis. 2022. V. 43. № 1–2. P. 143. https://doi.org/10.1002/elps.202100182
  28. Palmblad M., van Eck N.J., Bergquist J. // Trac Trends Anal. Chem. 2023. V. 159. P. 116899. https://doi.org/10.1016/j.trac.2022.116899
  29. Ermolenko Y., Nazarova N., Belov A. et al. // J. Drug Deliv. Sci. Technol. 2022. V. 70. P. 103220. https://doi.org/10.1016/j.jddst.2022.103220
  30. Wang M., Liu W., Tan S. et al. // J. Sep. Sci. 2022. V. 45. № 11. P. 1918. https://doi.org/10.1002/jssc.202100727
  31. Van Schepdael A. // Trac Trends Anal. Chem. 2023. V. 160. P. 116992. https://doi.org/10.1016/j.trac.2023.116992
  32. Kostal V., Arriaga E.A. // Electrophoresis. 2008. V. 29. № 12. P. 2578. https://doi.org/10.1002/elps.200700917
  33. Ibáñez C., Acunha T., Valdés A. et al. Capillary electrophoresis in food and foodomics / Springer, 2016. https://doi.org/10.1007/978-1-4939-6403-1_22
  34. Dong Y. // Trends Food Sci. Technol. 1999. V. 10. № 3. P. 87. https://doi.org/10.1016/S0924-2244(99)00031-X
  35. Parvez H., Caudy P., Parvez S. et al. Capill. Electroph. Biotech. Environ. Anal. / CRC Press, London, 2023. https://doi.org/10.1201/9780429070280
  36. Riu J., Barceló D. // Tech. Inst. Anal. Chem. 2000. V. 21. P. 739. https://doi.org/10.1016/S0167-9244(00)80023-2
  37. Slavíček V., Grüner B., Vespalec R. // J. Chromatogr. A. 2003. V. 984. № 1. P. 121. https://doi.org/10.1016/S0021-9673(02)01816-2
  38. Teixidor F., Laromaine A., Viñas C. et al. // Dalton Trans. 2008. № 3. P. 345. https://doi.org/10.1039/b715362g
  39. Vítová L., Fojt L., Vespalec R. // J. Chromatogr. A. 2014. V. 1338. P. 174. https://doi.org/10.1016/j.chroma.2014.02.060
  40. Horáková H., Vespalec R. // Electrophoresis. 2007. V. 28. № 20. P. 3639. https://doi.org/10.1002/elps.200600814
  41. Valeri A.L., Kremser L., Kenndler E. et al. // Electrophoresis. 2008. V. 29. № 8. P. 1658. https://doi.org/10.1002/elps.200700815
  42. Williams B.A., Vigh G. // Anal. Chem. 1996. V. 68. № 7. P. 1174. https://doi.org/10.1021/ac950968r
  43. Holub J., El Anwar S., Grüner B. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4499. https://doi.org/10.1002/ejic.201700651
  44. El Anwar S., Holub J., Tok O. et al. // J. Organomet. Chem. 2018. V. 865. P. 189. https://doi.org/10.1016/j.jorganchem.2018.02.050
  45. Kubasov A.S., Golubev A.V., Bykov A.Y. et al. // J. Mol. Struct. 2021. V. 1241. P. 130591. https://doi.org/10.1016/j.molstruc.2021.130591
  46. Kubasov A.S., Turishev E.S., Polyakova I.N. et al. // J. Organomet. Chem. 2017. V. 828. P. 106. https://doi.org/10.1016/j.jorganchem.2016.11.035
  47. Matveev E.Y., Levitskaya V.Y., Novikov S.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1928. https://doi.org/10.1134/S0036023622601532
  48. Monti Hughes A., Hu N. // Cancers (Basel). 2023. V. 15. № 16. P. 1491. https://doi.org/10.3390/cancers15164091
  49. Melanson J.E., Baryla N.E., Lucy C.A. // Trac Trends Anal. Chem. 2001. V. 20. № 6–7. P. 365. https://doi.org/10.1016/S0165-9936(01)00067-X
  50. Kaniansky D., Masár M., Marák J. et al. // J. Chromatogr. A. 1999. V. 834. № 1–2. P. 133. https://doi.org/10.1016/S0021-9673(98)00789-4
  51. Aupiais J. // J. Solution Chem. 2011. V. 40. № 9. P. 1629. https://doi.org/10.1007/s10953-011-9734-y

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).