A NEW VIEW ON HETEROVALENT ISOMORPHIC SUBSTITUTION OF Zr4+ IN Na3Zr2Si2PO12 BY TRIVALENT ELEMENTS
- Authors: Grishchenko D.N1, Medkov M.A1
-
Affiliations:
- Institute of Chemistry, Far East Branch of the Russian Academy of Sciences
- Issue: Vol 70, No 9 (2025)
- Pages: 1127-1137
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/356285
- DOI: https://doi.org/10.7868/S3034560X25090047
- ID: 356285
Cite item
Abstract
The partial substitution of Zr4+ in siliconposphate Na3Zr2Si2PO12 by a trivalent element has been investigated in this work. On the example of Fe3+-substituted NASICON it is shown that the formed complex does not correspond to the generally accepted formula Na3+y M(III)yZr2-y Si2PO12, in which electroneutrality of the obtained composition is achieved by charge compensation by additional Na+ ions. The formation of Na3M(III)yZr2-y Si2-y P1+y O12 complexes was established on the basis of X-ray phase analysis, scanning electron microscopy and refinement of crystal lattice parameters by the Rietveld method. The precursor composition Na3+y M(III)yZr2-y Si2PO12 is excessive in Na and Si for the Fe-substituted complex. Elements that are superstoichiometric for the new crystal lattice are partially incorporated into the main NASICON phase, increasing the parameters of the unit cell, and partially participate in the formation of additional phases: amorphous or crystalline. The amorphous phase is formed at grain boundaries of low dopant compositions. Impurity crystalline phases are formed in high dopant compositions.
Keywords
About the authors
D. N Grishchenko
Institute of Chemistry, Far East Branch of the Russian Academy of Sciences
Email: grishchenko@ich.dvo.ru
Vladivostok, Russia
M. A Medkov
Institute of Chemistry, Far East Branch of the Russian Academy of SciencesVladivostok, Russia
References
- Ahmad H., Kubra K.T., Butt A. et al. // J. Power Sources. 2023. V. 581. Р. 233518. https://doi.org/10.1016/j.jpowsour.2023.233518
- Lu Y., Li L., Zhang Q. et al. // Joule. 2018. V. 2. № 9. P. 1747. https://doi.org/10.1016/j.joule.2018.07.028
- Wang Y., Song S., Xu C. et al. // Nano Mater. Sci. 2019. V. 1. № 2. P. 91. https://doi.org/10.1016/j.nanoms.2019.02.007
- Singh M.D., Kaur G., Sharma S. et al. // J. Energy Storage. 2021. V. 41. P. 102984. https://doi.org/10.1016/j.est.2021.102984
- Li X., Hu E., Wang F. et al. // J. Mater. Chem. A. 2024. V. 12. № 8. P. 4796. https://doi.org/10.1039/D3TA05182J
- Zhong C., Deng Y., Hu W. et al. // Chem. Soc. Rev. 2015. V. 44. P. 7484. https://doi.org/10.1039/c5cs00303b
- Fergus J.-W. // Solid State Ionics. 2012. V. 227. P. 102. https://doi.org/10.1016/j.ssi.2012.09.019
- Jolley A.G., Taylor D.D., Schreiber N.J., Eric D. // J. Am. Ceram. Soc. 2015. V. 98. № 9. P. 2902. https://doi.org/10.1111/jace.13692
- Jolley A.G., Cohn G., Hitz G.T., Wachsman E.D. // Ionics. 2015. V. 21. P. 3031. https://doi.org/10.1007/s11581-015-1498-8
- Chen D., Luo F., Zhou W., Zhu D. // J. Alloys Compd. 2018. V. 757. P. 348. https://doi.org/10.1016/j.jallcom.2018.05.116
- Zhang Z., Zhang Q., Shi J. et al. // Adv. Energy Mater. 2016. V. 7. P. 1601196. https://doi.org/10.1002/aenm.201601196
- Zhang Q., Liang F., Qu T. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 423. Р. 012122. https://doi.org/10.1088/1757-899X/423/1/012122
- Ma Q., Guin M., Naqash S. et al. // Chem. Mater. 2016. V. 28 Р. 4821. https://doi.org/10.1021/acs.chemmater.6b02059
- Khakpour Z. // Electrochim. Acta. 2016. V. 196. Р. 337. https://doi.org/10.1016/j.electacta.2016.02.199
- Ruan Y., Song S., Liu J. et al. // Ceram. Int. 2017. V. 43. № 10. P. 7810. https://doi.org/10.1016/j.ceramint.2017.03.095
- Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1–2. Р. 173. https://doi.org/10.1016/S0167-2738(01)00701-9
- Samiee M., Radhakrishnan B., Rice Z. et al. // J. Power Sources. 2017. V. 347. P. 229. https://doi.org/10.1016/j.jpowsour.2017.02.042
- Yadav P., Bhatnagar M.C. // J. Electroceram. 2013. V. 30. P. 145. https://doi.org/10.1007/s10832-012-9776-6
- Xie B., Jiang D., Wu J. et al. // J. Phys. Chem. Solids. 2016. V. 88. P. 104. https://doi.org/10.1016/j.jpcs.2015.10.003
- Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366-367. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
- Грищенко Д.Н., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1042. https://doi.org/10.31857/S0044457X23600366
- Squattrito P.J., Rudolf P.R., Jorgensen J.D. et al. // Solid State Ionics. 1988. V. 31. Р. 31.
- Subramanian M.A., Rudolf P.R., Clearfield A. // J. Solid State Chem. 1985. V. 60. Р. 172.
- Grishchenko D.N., Medkov M.A. // Theor. Found. Chem. Eng. 2024. V. 58. № 2. P. 261. https://doi.org/10.1134/S0040579524700428
- Oh J.A.S., He L., Plewa A. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 40125. https://doi.org/10.1021/acsami.9b14986
- Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14 № 3. P. 823. https://doi.org/10.1039/d1nr06959d
Supplementary files


