A NEW VIEW ON HETEROVALENT ISOMORPHIC SUBSTITUTION OF Zr4+ IN Na3Zr2Si2PO12 BY TRIVALENT ELEMENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The partial substitution of Zr4+ in siliconposphate Na3Zr2Si2PO12 by a trivalent element has been investigated in this work. On the example of Fe3+-substituted NASICON it is shown that the formed complex does not correspond to the generally accepted formula Na3+y M(III)yZr2-y Si2PO12, in which electroneutrality of the obtained composition is achieved by charge compensation by additional Na+ ions. The formation of Na3M(III)yZr2-y Si2-y P1+y O12 complexes was established on the basis of X-ray phase analysis, scanning electron microscopy and refinement of crystal lattice parameters by the Rietveld method. The precursor composition Na3+y M(III)yZr2-y Si2PO12 is excessive in Na and Si for the Fe-substituted complex. Elements that are superstoichiometric for the new crystal lattice are partially incorporated into the main NASICON phase, increasing the parameters of the unit cell, and partially participate in the formation of additional phases: amorphous or crystalline. The amorphous phase is formed at grain boundaries of low dopant compositions. Impurity crystalline phases are formed in high dopant compositions.

About the authors

D. N Grishchenko

Institute of Chemistry, Far East Branch of the Russian Academy of Sciences

Email: grishchenko@ich.dvo.ru
Vladivostok, Russia

M. A Medkov

Institute of Chemistry, Far East Branch of the Russian Academy of Sciences

Vladivostok, Russia

References

  1. Ahmad H., Kubra K.T., Butt A. et al. // J. Power Sources. 2023. V. 581. Р. 233518. https://doi.org/10.1016/j.jpowsour.2023.233518
  2. Lu Y., Li L., Zhang Q. et al. // Joule. 2018. V. 2. № 9. P. 1747. https://doi.org/10.1016/j.joule.2018.07.028
  3. Wang Y., Song S., Xu C. et al. // Nano Mater. Sci. 2019. V. 1. № 2. P. 91. https://doi.org/10.1016/j.nanoms.2019.02.007
  4. Singh M.D., Kaur G., Sharma S. et al. // J. Energy Storage. 2021. V. 41. P. 102984. https://doi.org/10.1016/j.est.2021.102984
  5. Li X., Hu E., Wang F. et al. // J. Mater. Chem. A. 2024. V. 12. № 8. P. 4796. https://doi.org/10.1039/D3TA05182J
  6. Zhong C., Deng Y., Hu W. et al. // Chem. Soc. Rev. 2015. V. 44. P. 7484. https://doi.org/10.1039/c5cs00303b
  7. Fergus J.-W. // Solid State Ionics. 2012. V. 227. P. 102. https://doi.org/10.1016/j.ssi.2012.09.019
  8. Jolley A.G., Taylor D.D., Schreiber N.J., Eric D. // J. Am. Ceram. Soc. 2015. V. 98. № 9. P. 2902. https://doi.org/10.1111/jace.13692
  9. Jolley A.G., Cohn G., Hitz G.T., Wachsman E.D. // Ionics. 2015. V. 21. P. 3031. https://doi.org/10.1007/s11581-015-1498-8
  10. Chen D., Luo F., Zhou W., Zhu D. // J. Alloys Compd. 2018. V. 757. P. 348. https://doi.org/10.1016/j.jallcom.2018.05.116
  11. Zhang Z., Zhang Q., Shi J. et al. // Adv. Energy Mater. 2016. V. 7. P. 1601196. https://doi.org/10.1002/aenm.201601196
  12. Zhang Q., Liang F., Qu T. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 423. Р. 012122. https://doi.org/10.1088/1757-899X/423/1/012122
  13. Ma Q., Guin M., Naqash S. et al. // Chem. Mater. 2016. V. 28 Р. 4821. https://doi.org/10.1021/acs.chemmater.6b02059
  14. Khakpour Z. // Electrochim. Acta. 2016. V. 196. Р. 337. https://doi.org/10.1016/j.electacta.2016.02.199
  15. Ruan Y., Song S., Liu J. et al. // Ceram. Int. 2017. V. 43. № 10. P. 7810. https://doi.org/10.1016/j.ceramint.2017.03.095
  16. Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1–2. Р. 173. https://doi.org/10.1016/S0167-2738(01)00701-9
  17. Samiee M., Radhakrishnan B., Rice Z. et al. // J. Power Sources. 2017. V. 347. P. 229. https://doi.org/10.1016/j.jpowsour.2017.02.042
  18. Yadav P., Bhatnagar M.C. // J. Electroceram. 2013. V. 30. P. 145. https://doi.org/10.1007/s10832-012-9776-6
  19. Xie B., Jiang D., Wu J. et al. // J. Phys. Chem. Solids. 2016. V. 88. P. 104. https://doi.org/10.1016/j.jpcs.2015.10.003
  20. Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366-367. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
  21. Грищенко Д.Н., Медков М.А. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1042. https://doi.org/10.31857/S0044457X23600366
  22. Squattrito P.J., Rudolf P.R., Jorgensen J.D. et al. // Solid State Ionics. 1988. V. 31. Р. 31.
  23. Subramanian M.A., Rudolf P.R., Clearfield A. // J. Solid State Chem. 1985. V. 60. Р. 172.
  24. Grishchenko D.N., Medkov M.A. // Theor. Found. Chem. Eng. 2024. V. 58. № 2. P. 261. https://doi.org/10.1134/S0040579524700428
  25. Oh J.A.S., He L., Plewa A. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 40125. https://doi.org/10.1021/acsami.9b14986
  26. Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14 № 3. P. 823. https://doi.org/10.1039/d1nr06959d

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).