Intercalation of d- and f-metal malonates into layered yttrium hydroxide
- Authors: Sheichenko E.D.1,2, Gumenyk V.M.1,3, Yapryntsev A.D.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry
- National Research University Higher School of Economics
- Faculty of Materials Science, Lomonosov Moscow State University
- Issue: Vol 70, No 8 (2025)
- Pages: 995-1003
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/308587
- DOI: https://doi.org/10.31857/S0044457X25080024
- EDN: https://elibrary.ru/jimmxl
- ID: 308587
Cite item
Abstract
Methods for obtaining hybrid compounds based on layered yttrium hydroxide intercalated with malonate complexes of d-metals (Cr3+, Fe3+, Ni2+, Cu2+, Zn2+) and f-metals (Eu3+, Tb3+) have been developed. The influence of temperature during anion-exchange reactions and the nature of the intercalated metal cations on the orientation and coordination modes of malonate anions within the interlayer space of yttrium layered hydroxide was established. The content of d- and f-metal cations in the resulting hybrid compounds increases in the following order of intercalated cations: Tb3+, Ni2+, Zn2+, Cu2+, Cr3+, Eu3+, Fe2+. These results highlight the potential of yttrium layered hydroxide intercalated with malonate anions as a platform for designing novel hybrid materials based on d- and f-metals.
About the authors
E. D. Sheichenko
Kurnakov Institute of General and Inorganic Chemistry; National Research University Higher School of Economics
Email: yapryntsev@igic.ras.ru
Leninsky Prospect 31, Moscow, 119991 Russia; Myasnitskaya St. 20, Moscow, 101000 Russia
V. M. Gumenyk
Kurnakov Institute of General and Inorganic Chemistry; Faculty of Materials Science, Lomonosov Moscow State University
Email: yapryntsev@igic.ras.ru
Leninsky Prospect 31, Moscow, 119991 Russia; Leninskie Gory 1, Moscow, 119991 Russia
A. D. Yapryntsev
Kurnakov Institute of General and Inorganic Chemistry
Author for correspondence.
Email: yapryntsev@igic.ras.ru
Leninsky Prospect 31, Moscow, 119991 Russia
References
- Rogez G., Massobrio C., Rabu P. et al. // Chem. Soc. Rev. 2011. V. 40. № 2. P. 1031. https://doi.org/10.1039/c0cs00159g
- Oliver S.R. // Chem. Soc. Rev. 2009. V. 38. № 7. P. 1868. https://doi.org/10.1039/b710339p
- Swanson C.H., Shaikh H.A., Rogow D.L. et al. // J. Am. Chem. Soc. 2008. V. 130. № 35. P. 11737. https://doi.org/10.1021/ja802420h
- Duan X., Evans D.G. Layered Double Hydroxides.Berlin, Heidelberg: Springer-Verlag, 2006.
- Liang J., Ma R., Sasaki T. // Dalton Trans. 2014. V. 43. № 27. P. 10355. https://doi.org/10.1039/C4DT00425F
- Gándara F., Perles J., Snejko N. et al. // Angew. Chem.Int. Ed. 2006. V. 45. № 47. P. 7998. https://doi.org/10.1002/anie.200602502
- Liu L., Yu M., Zhang J. et al. // J. Mater. Chem. 2015. V. 3. № 10. P. 2326. https://doi.org/10.1039/c4tc02760d
- Liu L., Wang Q., Gao C. et al. // J. Phys. Chem. C. 2014. V. 118. № 26. P. 14511. https://doi.org/10.1021/jp502281m
- Yapryntsev A., Abdusatorov B., Yakushev I. et al. // Dalton Trans. 2019. V. 48. № 18. P. 6111. https://doi.org/10.1039/C9DT00390H
- Rodina A.A., Yapryntsev A.D., Abdusatorov B.A. et al. // Inorganics. 2022. V. 10. № 12. P. 233. https://doi.org/10.3390/inorganics10120233
- Liu W., Zhang J., Yin X. et al. // Mater. Chem. Phys. 2021. V. 266. № September 2020. P. 124540. https://doi.org/10.1016/j.matchemphys.2021.124540
- Xiang Y., Yu X.-F., He D.-F. et al. // Adv. Funct. Mater. 2011. V. 21. № 22. P. 4388. https://doi.org/10.1002/adfm.201101808
- Kim H., Gang B., Jung H. et al. // J. Solid State Chem. 2019. V. 269. № September 2018. P. 233. https://doi.org/10.1016/j.jssc.2018.09.037
- Ren Y., Feng J. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 6. P. 6797. https://doi.org/10.1021/acsami.9b17371
- Wu M., Li L., Yu X. et al. // J. Biomed. Nanotechnol. 2014. V. 10. № 12. P. 3620. https://doi.org/10.1166/jbn.2014.2035
- Gándara F., Puebla E.G., Iglesias M. et al. // Chem. Mater. 2009. V. 21. № 4. P. 655. https://doi.org/10.1021/cm8029517
- Jiřičková M., Demel J., Kubát P. et al. // J. Phys. Chem. 2011. V. 115. № 44. P. 21700. https://doi.org/10.1021/jp207505n
- Teplonogova M.A., Volostnykh M. V., Yapryntsev A.D. et al. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 15373. https://doi.org/10.3390/ijms232315373
- Liu Z., Golodukhina S. V., Kameneva S. V. et al. // Nanosyst. Physics, Chem. Math. 2024. V. 15. № 1. P. 104. https://doi.org/10.17586/2220-8054-2024-15-1-104-114
- Li J., Li J.-G., Zhu Q. et al. // Mater. Des. 2016. V. 112. P. 207. https://doi.org/10.1016/j.matdes.2016.09.055
- Bai M., Wan H., Zhang Y. et al. // Chem. Sci. 2024. P. 16887. https://doi.org/10.1039/d4sc02625j
- Yapryntsev A.D., Skogareva L.S., Gol’dt A.E. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. P. 1027. https://doi.org/10.1134/S0036023615090211
- Liang J., Ma R., Geng F. et al. // Chem. Mater. 2010. V. 22. № 21. P. 6001. https://doi.org/10.1021/cm102236n
- Yoon Y., Lee B.-I., Lee K.S. et al. // Adv. Funct. Mater. 2009. V. 19. № 21. P. 3375. https://doi.org/10.1002/adfm.200901051
- Lee S.-S., Joh C.-H., Byeon S.-H. // Mater. Sci. Eng. B. 2008. V. 151. № 2. P. 163. https://doi.org/10.1016/j.mseb.2008.06.027
- Teplonogova M.A., Yapryntsev A.D., Baranchikov A.E. et al. // Inorg. Chem. 2022. V. 61. № 49. P. 19817. https://doi.org/10.1021/acs.inorgchem.2c02950
- Teplonogova M.A., Yapryntsev A.D., Baranchikov A.E. // Micromachines. 2023. V. 14. P. 1791. https://doi.org/10.3390/mi14091791
- Lee B. Il, Lee K.S., Lee J.H. et al. // Dalton Trans. 2009. № 14. P. 2490. https://doi.org/10.1039/b823172a
- Wu L., Chen G., Li Z. // Small. 2017. V. 13. № 23. P. 1604070. https://doi.org/10.1002/smll.201604070
- Zhu Q., Li S., Wang Q. et al. // Nanoscale. 2019. V. 11. № 6. P. 2795. https://doi.org/10.1039/c8nr08900k
- Zhu Q., Li S., Jin J. et al. // Chem. — An Asian J. 2018. V. 13. № 23. P. 3664. https://doi.org/10.1002/asia.201801447
- Li W., Gu Q., Su F. et al. // Inorg. Chem. 2013. V. 52. № 24. P. 14010. https://doi.org/10.1021/ic4017307
- Zhao Z., Lin H., Yang T. et al. // RSC Adv. 2024. V. 14. № 11. P. 7430. https://doi.org/10.1039/d3ra07310f
- Shen T., Zhang Y., Liu W. et al. // J. Mater. Chem. C. 2015. V. 3. № 8. P. 1807. https://doi.org/10.1039/c4tc02583k
- Rardin R.L., Tolman W.B., Lippard S.J. // New. J. Chem. 1991. V. 15. P. 417.
- Lukashin A. V., Vertegel A.A., Eliseev A.A. et al. // J. Nanoparticle Res. 2003. V. 5. № 5–6. P. 455. https://doi.org/10.1023/B:NANO.0000006087.95385.81
- Hartdegen V., Klapötke T.M., Sproll S.M. // Inorg. Chem. 2009. V. 48. № 19. P. 9549. https://doi.org/10.1021/ic901413n
- Li Y., Xu Y., Wang Y. // Chem. — A Eur. J. 2016. V. 22. № 31. P. 10976. https://doi.org/10.1002/chem.201601189
- Gutmann N.H., Spiccia L., Turney T.W. // J. Mater. Chem. 2000. V. 10. № 5. P. 1219. https://doi.org/10.1039/a909902f
- Xu Z.P., Kurniawan N.D., Bartlett P.F. et al. // Chem. — A Eur. J. 2007. V. 13. № 10. P. 2824. https://doi.org/10.1002/chem.200600571
- Lee J.H., Jung D.Y. // Bull. Korean Chem. Soc. 2013. V. 34. № 11. P. 3488. https://doi.org/10.5012/bkcs.2013.34.11.3488
- Zhang S., Kano N., Mishima K. et al. // Appl. Sci. 2019. V. 9. № 22. P. 1. https://doi.org/10.3390/app9224805
- Tarasov K.A., O’Hare D., Isupov V.P. // Inorg. Chem. 2003. V. 42. № 6. P. 1919. https://doi.org/10.1021/ic0203926
- Morais A.F., Silva I.G.N., Lima B.C. et al. // ACS Omega. 2020. V. 5. № 37. P. 23778. https://doi.org/10.1021/acsomega.0c02848
- Sarakha L., Forano C., Boutinaud P. // Opt. Mater. (Amst). 2009. V. 31. № 3. P. 562. https://doi.org/10.1016/j.optmat.2007.10.018
- Ma J., Yan B. // Dye. Pigment. 2018. V. 153. P. 266. https://doi.org/10.1016/j.dyepig.2018.02.017
- Tsyganok A.I., Tsunoda T., Hamakawa S. et al. // J. Catal. 2003. V. 213. № 2. P. 191. https://doi.org/10.1016/S0021-9517(02)00047-7
- Chang Z., Evans D., Duan X. et al. // J. Phys. Chem. Solids. 2006. V. 67. № 5–6. P. 1054. https://doi.org/10.1016/j.jpcs.2006.01.025
- Wu G., Wang L., Yang L. et al. // Eur. J. Inorg. Chem. 2007. № 6. P. 799. https://doi.org/10.1002/ejic.200600946
- Li C., Wang L., Evans D.G. et al. // Ind. Eng. Chem. Res. 2009. V. 48. № 4. P. 2162. https://doi.org/10.1021/ie800342u
- Pasán J., Delgado F.S., Rodríguez-Martín Y. et al. // Polyhedron. 2003. V. 22. № 14–17. P. 2143. https://doi.org/10.1016/S0277-5387(03)00203-1
- Dobrokhotova Z.V., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. № 19. P. 3116. https://doi.org/10.1002/ejic.201500243
- Bazhina E.S., Kiskin M.A., Korlyukov A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 43. P. 4116. https://doi.org/10.1002/ejic.202000630
- Zauzolkova N., Dobrokhotova Z., Lermontov A. et al. // J. Solid State Chem. 2013. V. 197. P. 379. https://doi.org/10.1016/j.jssc.2012.09.014
- Mcintyre L.J., Jackson L.K., Fogg A.M. // Chem. Mater. 2008. V. 20. № 1. P. 335. https://doi.org/10.1021/cm7019284
- Gutmann N., Müller B., Tiller H.J. // J. Solid State Chem. 1995. V. 119. № 2. P. 331. https://doi.org/10.1016/0022-4596(95)80049-U
- Geng F., Matsushita Y., Ma R. et al. // Inorg. Chem. 2009. V. 48. № 14. P. 6724. https://doi.org/10.1021/ic900669p
- Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/RCR4920
- Hindocha S.A., McIntyre L.J., Fogg A.M. // J. Solid State Chem. 2009. V. 182. № 5. P. 1070. https://doi.org/10.1016/j.jssc.2009.01.039
- Serezhkin V.N., Medvedkov Y.A., Serezhkina L.B. et al. // Russ. J. Phys. Chem. A. 2015. V. 89. № 6. P. 1018. https://doi.org/10.1134/S0036024415060254
- Shao B., Feng P., Wang X. et al. // J. Phys. Chem. C. 2019. V. 123. № 12. P. 7467. https://doi.org/10.1021/acs.jpcc.9b00888
- Yapryntsev A.D., Baranchikov A.E., Skogareva L.S. et al. // Cryst. Eng. Comm. 2015. V. 17. № 13. P. 2667. https://doi.org/10.1039/C4CE02303J
- Muraishi K. // Thermochim. Acta. 1990. V. 164. P. 401. https://doi.org/10.1016/0040-6031(90)80455-8
- Caires F.J., Lima L.S., Carvalho C.T. et al. // Thermochim. Acta. 2010. V. 497. № 1–2. P. 35. https://doi.org/10.1016/j.tca.2009.08.013
- Sheichenko E.D., Yapryntsev A.D., Rodina A.A. et al. // Russ. J. Inorg. Chem. 2023. https://doi.org/10.1134/S0036023622602082
- Rodríguez-Martín Y., Sanchiz J., Ruiz-Pérez C. et al. // Cryst. Eng. Comm. 2002. V. 4. № 107. P. 631. https://doi.org/10.1039/B206728E
- Nakamoto K. // Applications in Coordination Chemistry, in: Infrared Raman Spectra Inorg. Coord. Compd., John Wiley & Sons, Inc., 2008: pp. 1–273. https://doi.org/10.1002/9780470405888.ch1
- Henrist C., Traina K., Hubert C. et al. // J. Cryst. Growth. 2003. V. 254. № 1–2. P. 176. https://doi.org/10.1016/S0022-0248(03)01145-X
- Gordeeva A., Hsu Y.-J., Jenei I.Z. et al. // ACS Omega. 2020. V. 5. № 28. P. 17617. https://doi.org/10.1021/acsomega.0c02075
Supplementary files
