Aerosol printing of electrochromic films based on nickel and tungsten doped V2O5
- Авторлар: Gorobtsov P.Y.1, Fisenko N.A.1, Simonenko N.P.1, Simonenko T.L.1, Simonenko E.P.1
-
Мекемелер:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Шығарылым: Том 70, № 8 (2025)
- Беттер: 1081-1088
- Бөлім: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://ogarev-online.ru/0044-457X/article/view/308585
- DOI: https://doi.org/10.31857/S0044457X25080123
- EDN: https://elibrary.ru/jjulyv
- ID: 308585
Дәйексөз келтіру
Аннотация
Vanadium(V) oxide films doped with 10 mol% NiO and 10 mol. % WO3 were obtained by aerosol printing. In the first case, the film crystallizes in tetragonal β-V2O5 modification with high texturing along the {200} crystallographic plane, while the material is X-ray amorphous when doped with tungsten. At nickel doping the film is formed by one-dimensional structures, while in the case of the sample V2O5–10 mol. % WO3 — by particles of irregular shape or close to rounded. The values of electron yield work from the surface of the materials indicate high defectivity of the film containing WO3. Both samples demonstrate anodic electrochromism, but V2O5–10 mol. % NiO is characterized by higher values of optical contrast and coloring efficiency. The results of the study clearly reflect the influence of the nature of the considered dopants on the functional properties of the obtained materials and demonstrate the promising potential of the aerosol printing method for the formation of electrochromic films.
Авторлар туралы
P. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia
N. Fisenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: phigoros@gmail.com
Leninsky pr., 31, Moscow, 119991 Russia
Әдебиет тізімі
- Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
- Mortimer R.J. // Annu. Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
- Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. № January 2019. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
- Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim. Acta. 2018. V. 259. № January 2018. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
- Granqvist C.G. // Thin Solid Films. 2014. V. 564. № August 2014. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
- Yang G., Zhang Y.M., Cai Y. et al. // Chem. Soc. Rev. 2020. V. 49. № 23. P. 8687. https://doi.org/10.1039/d0cs00317d
- Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
- Vlachopoulos N., Nissfolk J., Möller M. et al. // Electrochim. Acta. 2008. V. 53. № 11. P. 4065. https://doi.org/10.1016/j.electacta.2007.10.011
- Cheng K.C., Chen F.R., Kai J.J. // Solar Energy Materials and Solar Cells. 2006. V. 90. № 7–8. P. 1156. https://doi.org/10.1016/j.solmat.2005.07.006
- Scherer M.R.J., Li L., Cunha P.M.S. et al. // Advanced Materials. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
- Jin A., Chen W., Zhu Q. et al. // Electrochim. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
- Kim S., Taya M., Xu C. // J. Electrochem. Soc. 2009. V. 156. № 2. P. E40. https://doi.org/10.1149/1.3031978
- Vernardou D. // Coatings. 2017. V. 7. № 2. P. 24. https://doi.org/10.3390/coatings7020024
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2019. V. 321. P. 134743. https://doi.org/10.1016/j.electacta.2019.134743
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // Electrochim. Acta. 2017. V. 232. P. 54. https://doi.org/10.1016/j.electacta.2017.02.128
- Yao J., Li Y., Massé R.C. et al. // Energy Storage Mater. 2018. V. 11. P. 205. https://doi.org/10.1016/j.ensm.2017.10.014
- Yue Y., Liang H. // Adv. Energy Mater. 2017. V. 7. № 17. P. 1. https://doi.org/10.1002/aenm.201602545
- Liu M., Su B., Tang Y. et al. // Adv. Energy Mater. 2017. V. 7. № 23. P. 1700885. https://doi.org/10.1002/aenm.201700885
- Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
- Panagopoulou M., Vernardou D., Koudoumas E. et al. // J. Phys. Chem. C. 2017. V. 121. № 1. P. 70. https://doi.org/10.1021/acs.jpcc.6b09018
- Lin T.C., Jheng B.J., Huang W.C. // Energies (Basel). 2021. V. 14. № 8. P. 1. https://doi.org/10.3390/en14082065
- Sonavane A.C., Inamdar A.I., Shinde P.S. et al. // J. Alloys Compd. 2010. V. 489. № 2. P. 667. https://doi.org/10.1016/j.jallcom.2009.09.146
- Yoshino T., Kobayashi K., Araki S. et al. // Solar Energy Materials and Solar Cells. 2012. V. 99. P. 43. https://doi.org/10.1016/j.solmat.2011.08.024
- Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
- Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
- Niklasson G.A., Berggren L., Larsson A.L. // Solar Energy Materials and Solar Cells. 2004. V. 84. № 1–4. P. 315. https://doi.org/10.1016/j.solmat.2004.01.045
- Ataalla M., Afify A.S., Hassan M. et al. // J. Non. Cryst. Solids. 2018. V. 491. № March. P. 43. https://doi.org/10.1016/j.jnoncrysol.2018.03.050
- Chithambararaj A., Nandigana P., Kaleesh Kumar M. et al. // Appl. Surf. Sci. 2022. V. 582. № January. P. 152424. https://doi.org/10.1016/j.apsusc.2022.152424
- Wang W.Q., Yao Z.J., Wang X.L. et al. // J. Colloid Interface Sci. 2019. V. 535. P. 300. https://doi.org/10.1016/j.jcis.2018.10.006
- Wen R.T., Niklasson G.A., Granqvist C.G. // Solar Energy Materials and Solar Cells. 2014. V. 120. № January 2014. P. 151. https://doi.org/10.1016/j.solmat.2013.08.035
- Ćatić N., Wells L., Al Nahas K. et al. // Appl. Mater. Today. 2020. V. 19. № June 2020. P. 100618. https://doi.org/10.1016/j.apmt.2020.100618
- Serpelloni M., Cantù E., Borghetti M. et al. // Sensors (Switzerland). 2020. V. 20. № 3. P. 841. https://doi.org/10.3390/s20030841
- Wilkinson N.J., Smith M.A.A., Kay R.W. et al. // International Journal of Advanced Manufacturing Technology. 2019. V. 105. № 11. P. 4599. https://doi.org/10.1007/s00170-019-03438-2
- Agarwala S., Goh G.L., Yeong W.Y. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 191. № 1. P. 012027. https://doi.org/10.1088/1757-899X/191/1/012027
- Cooper C., Hughes B. // 2020 Pan Pacific Microelectronics Symposium, Pan Pacific 2020. 2020. P. 170. https://doi.org/10.23919/PanPacific48324.2020.9059444
- Talledo A., Valdivia H., Benndorf C. // Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 2003. V. 21. № 4. P. 1494. https://doi.org/10.1116/1.1586282
- Zou C., Fan L., Chen R. et al. // CrystEngComm. 2012. V. 14. № 2. P. 626. https://doi.org/10.1039/c1ce06170d
- Khlayboonme S.T. // Results Phys. 2022. V. 42. № November 2022. P. 106000. https://doi.org/10.1016/j.rinp.2022.106000
- Khlayboonme S.T., Thedsakhulwong A. // Mater. Res. Express. 2022. V. 9. № 7. P. 076401. https://doi.org/10.1088/2053-1591/ac827a
- Asadov A., Mukhtar S., Gao W. // Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2015. V. 33. № 4. P. 041802. https://doi.org/10.1116/1.4922628
- Gorobtsov P.Yu., Simonenko T.L., Simonenko N.P. et al. // Colloids and Interfaces. 2023. V. 7. № 1. P. 20. https://doi.org/10.3390/colloids7010020
- Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
- Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. № 3. P. 033710. https://doi.org/10.1063/1.3611392
- Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
- Choi S.G., Seok H.J., Rhee S. et al. // J. Alloys. Compd. 2021. V. 878. № October 2021. P. 160303. https://doi.org/10.1016/j.jallcom.2021.160303
- Peng H., Sun W., Li Y. et al. // Nano Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
- Gorobtsov P.Yu., Mokrushin A.S., Simonenko T.L. et al. // Materials. 2022. V. 15. № 21. P. 7837. https://doi.org/10.3390/ma15217837
Қосымша файлдар
