Thermodynamic modeling of phase formation conditions in the Si–O–C–H–He and Si–O–C–H–N–He systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Thermodynamic modeling of the film synthesis process from the gas phase in the Si–O–C–H–He and Si–O–C–H–N–He systems during the decomposition of hexamethyldisiloxane was performed. The modeling used the method for calculating chemical equilibria based on minimizing the Gibbs energy of the system, implemented using the Data Bank on the properties of electronic materials. It was shown that various phase complexes containing silicon oxide, carbide, and nitride can be obtained in CVD processes of such systems. The results of the thermodynamic modeling can be useful for developing methods for the synthesis of film coatings based on such phase complexes.

Sobre autores

V. Shestakov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University of Architecture and Civil Engineering

Email: vsh@niic.nsc.ru
Novosibirsk, 630090 Russia; Novosibirsk, 630008 Russia

M. Kosinova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vsh@niic.nsc.ru
Novosibirsk, 630090 Russia

Bibliografia

  1. Stabler C., Ionescu E., Graczyk-Zajac M. et al. // J. Am. Ceram. Soc. 2018. V. 101. P. 4817. https://doi.org/10.1111/jace.15932
  2. Colombo P., Mera G., Riedel R. et al. // J. Am. Ceram. Soc. 2010. V. 93. P. 1805. https://doi.org/10.1111/j.1551-2916.2010.03876.x
  3. Riedel R., Mera G., Hauser R. et al. // J. Ceram. Soc. Jpn. 2006. V. 114. P. 425. http://dx.doi.org/10.2109/jcersj.114.425
  4. Linck C., Ionescu E., Papendorf B. et al. // Int. J. Mater. Res. 2012. V. 103. P. 31. https://doi.org/10.3139/146.110625
  5. Rosenburg F., Balke B., Nicoloso N. et al. // Molecules. 2020. V. 25. P. 5919. 10.3390/molecules25245919' target='_blank'>https://doi: 10.3390/molecules25245919
  6. Roth F., Schmerbauch C., Ionescu E. et al. // J. Sens. Sens. Syst. 2015. V. 4. P. 133. https://doi.org/10.5194/jsss-4-133-2015
  7. Liu J., Tian C., Jiang T. et al. // J. Eur. Ceram. Soc. 2023. V. 43. P. 3191. https://doi.org/10.1016/j.jeurceramsoc.2023.02.045
  8. Xia K., Liu X., Liu H. et al. // Electrochim. Acta. 2021. V. 372. 137899.
  9. Mujib S.B., Cuccato R., Mukherjee S. et al. // Ceram. Int. 2020. V. 46. P. 3565. https://doi.org/10.1016/j.ceramint.2019.10.074
  10. Graczyk-Zajac M., Reinold L.M., Kaspar J. et al. // Nanomaterials. 2015. V. 5. P. 233. https://doi.org/10.3390/nano5010233
  11. Tang H., Wang K., Ren K. et al. // Ceram. Inter. 2023. V. 49. P. 20406. https://doi.org/10.1016/j.ceramint.2023.03.169
  12. Dong B.-B., Wang F.-H., Yang M.-Y. et al. // J. Membr. Sci. 2019. V. 579. P. 111. https://doi.org/10.1016/j.memsci.2019.02.066
  13. Zhuo R., Colombo P., Pantano C., Vogler E.A. // Acta Biomater. 2005. V. 1. P. 583. https://doi.org/10.1016/j.actbio.2005.05.005
  14. Arango-Ospina M., Xie F., Gonzalo-Juan I. et al. // Appl. Mater. Today. 2020. V. 18. 100482. https://doi.org/10.1016/j.apmt.2019.100482
  15. Liu H., ul Haq Tariq N., Han R. et al. // J. Non-Cryst. Solids. 2022. V. 575. P. 121204. https://doi.org/10.1016/j.jnoncrysol.2021.121204
  16. Iastrenski M.F., da Silva P.R.C., Tarley C.R.T., Segatelli M.G. // Ceram. Int. 2019. V. 45. P. 21698. https://doi.org/10.1016/j.ceramint.2019.07.170
  17. Wen Q., Yu Z., Riedel R. // Prog. Mater. Sci. 2020. V. 109. P. 100623. https://doi.org/10.1016/j.pmatsci.2019.100623
  18. Widgeon S.J., Sen S., Mera G. et al. // Chem. Mater. 2010. V. 22. P. 6221. https://doi.org/10.1021/cm1021432
  19. Breval E., Hammond M., Pantano C.G. // J. Am. Ceram. Soc. 1994. V. 77. P. 3012. https://doi.org/10.1111/j.1151-2916.1994.tb04538.x
  20. Lu K., Erb D. // Int. Mater. Rev. 2018. V. 63. P. 139. https://doi.org/10.1080/09506608.2017.1322247
  21. Tian Z., Zhu W., Yan X., Su D. // Materials. 2022. V. 15. P. 6395. https://doi.org/10.3390/ma15186395
  22. Ricohermoso E.III, Klug F., Schlaak H. et al. // Int. J. Appl. Ceram. Technol. 2022. V. 19. P. 149. https://doi.org/10.1111/ijac.13800
  23. Ricohermoso E.III, Klug F., Schlaak H. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 6377. https://doi.org/10.1016/j.jeurceramsoc.2021.07.001
  24. Soraru G.D., D’Andrea G., Campostrini R. et al. // J. Am. Ceram. Soc. 1995. V. 78. P. 379. https://doi.org/10.1111/j.1151-2916.1995.tb08811.x
  25. Ryan J.V., Colombo P., Howell J.A., Pantano C.G. // Int. J. Appl. Ceram. Technol. 2010. V. 7. P. 675. https://doi.org/10.1111/j.1744-7402.2009.02374.x
  26. Mandracci P., Rivolo P. // Coatings. 2023. V. 13. P. 1075. https://doi.org/10.3390/coatings13061075
  27. Hong N., Zhang Y., Sun Q. et al. // Materials. 2021. V. 14. P. 4827. https://doi.org/10.3390/ma14174827
  28. de Freitas A.S.M., Maciel C.C., Rodrigues J.S. et al. // Vacuum. 2021. V. 194. P. 110556. https://doi.org/10.1016/j.vacuum.2021.110556
  29. Gilman A.B., Zinoviev A.V., Kuznetsov A.A. // High Energy Chem. 2022. V. 56. P. 468. [Гильман А.Б., Зиновьев А.В., Кузнецов А.А. // Хим. выс. энергий. 2022. Т. 56. С. 470. https://doi.org/10.1134/S0018143922060078]
  30. Balderas I.E.G., Ruiz C.M., Andres E.R. et al. // Int. J. Appl. Ceram. Technol. 2024. V. 21. P. 3319. https://doi.org/10.1111/ijac.14796
  31. Yu S., Tu R., Ito A., Goto T. // Mater. Lett. 2010. V. 64. P. 2151. https://doi.org/10.1016/j.matlet.2010.07.022
  32. Yu S., Tu R., Goto T. // J. Eur. Ceram. Soc. 2016. V. 36. P. 403. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.029
  33. Jacobson N.S., Opila E.J. // Metall. Trans. A. 1993. V. 24. P. 1212. https://doi.org/10.1007/BF02657254
  34. Sevast'yanov V.G., Ezhov Yu.S., Simonenko E.P., Kuznetsov N.T. Materials Science Trans. Forum. Tech. Publications, Switzerland. 2004. V. 457–460. Р. 59. https:// doi.org/10.4028/www.scientific.net/MSF.457-460.59
  35. Лебедев А.С., Еремяшев В.Е., Трофимов Е.А., Анфилогов В.Н. // Докл. АН. 2019. Т. 484. № 5. С. 559. https://doi.org/10.1134/S0012500819020046
  36. Шестаков В.А., Косяков В.И., Косинова М.Л. // Изв. АН. Сер. хим. 2019. Т. 11. С. 1983. https://doi.org/1066-5285/19/6811-1983
  37. Шестаков В.А., Селезнев В.А., Мутилин С.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 651. https://doi.org/10.1134/S0036023623600491
  38. Шестаков В.А., Косинова М.Л. // Журн. неорган. химии. 2024. Т. 64. № 1. С. 43. https://doi.org/10.31857/S0044457X24010059
  39. Shestakov V.A., Kosinova M.L. // Russ. J. Phys. Chem. A. 2024. V. 98. № 9. P. 2007. https://doi.org/10.1134/S0036024424701140
  40. Суляева В.С., Шестаков В.А., Румянцев Ю.М., Косинова М.Л. // Неорган. материалы. 2018. Т. 54. № 2. С. 146. https://doi.org/10.1134/S0020168518020152
  41. Шестаков В.А., Яковкина Л.В., Кичай В.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1746. https://doi.org/10.31857/S0044457X22600608
  42. Кузнецов Ф.А., Буждан Я.М., Коковин Г.А. // Изв. СО АН СССР. Сер. хим. наук. 1975. № 2. № 1. С. 24.
  43. Kuznetsov F.A., Titov V.A. Proc. Int. Symp. on Advanced Materials (September 24–30, 1995). Jpn., P. 16.
  44. Термодинамические свойства индивидуальных веществ. / Под ред. Глушко В.П. и др. М.: Наука, 1988. Т. 3. Кн. 2. 395 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».