Политермическое исследование фазовых равновесий, растворимости и критических явлений в тройной системе нитрат цезия–вода–полиэтиленгликоль-1500

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Визуально-политермическим методом в интервале температур 10–110°С изучены фазовые равновесия и растворимость в смесях компонентов по десяти сечениям треугольника составов в тройной системе нитрат цезия–вода–полиэтиленгликоль-1500. Методом отношения объемов жидких фаз определена температура образования критической ноды монотектического состояния (78.8°С) и зависимость составов растворов, соответствующих критическим точкам растворимости области расслоения, от температуры. Изотермические фазовые диаграммы изученной тройной системы построены при 10.0, 25.0, 40.0, 50.0, 78.8, 90.0 и 100.0°С, определена растворимость компонентов. Установлено, что в интервале температур 10.0–40.0°С на изотермических диаграммах существует треугольник эвтонического состояния. Выше температуры начала расслаивания (78.8°С) на изотермах реализуется монотектический треугольник с примыкающими полями насыщенных растворов и расслоения. Коэффициенты распределения полиэтилекгликоля-1500 между равновесными жидкими фазами монотектического состояния рассчитаны в интервале температур 78.8–100.0°С. Установлено, что выше 90°С нитрат цезия проявляет эффективность в качестве высаливателя полиэтиленгликоля-1500. При всех температурах указанного интервала полиэтиленгликоль-1500 значительно снижает растворимость нитрата цезия в воде.

Об авторах

Д. Г. Черкасов

Саратовский национальный исследовательский государственный университет

Email: dgcherkasov@mail.ru
Астраханская ул., 83, Саратов, 410012 Россия

Я. С. Климова

Саратовский национальный исследовательский государственный университет

Email: dgcherkasov@mail.ru
Астраханская ул., 83, Саратов, 410012 Россия

В. В. Данилина

Саратовский национальный исследовательский государственный университет

Email: dgcherkasov@mail.ru
Астраханская ул., 83, Саратов, 410012 Россия

К. К. Ильин

Саратовский национальный исследовательский государственный университет

Email: dgcherkasov@mail.ru
Астраханская ул., 83, Саратов, 410012 Россия

К. Е. Зубарев

Саратовский национальный исследовательский государственный университет

Автор, ответственный за переписку.
Email: dgcherkasov@mail.ru
Астраханская ул., 83, Саратов, 410012 Россия

Список литературы

  1. Nemati-Kande E., Azizi Z., Mokarizadeh M. // Sci Rep. 2023. V. 13. № 1. P. 1045. https://doi.org/10.1038/s41598-023-28046-9
  2. Mokarizadeh M., Nemati-Kande E. // J. Chem. Eng. Data. 2022. V. 67. № 5. P. 1237. https://doi.org/10.1021/acs.jced.2c00091
  3. Oliveira A.C., Sosa F.H.B., Costa M.C. et al. // Fluid Phase Equilib. 2018. V. 476. P. 118. https://doi.org/10.1016/j.fluid.2018.07.035
  4. Milevskiy N.A., Boryagina I.V., Karpukhina E.A. et al. // J. Chem. Eng. Data. 2021. V. 66. № 2. P. 1021. https://doi.org/10.1021/acs.jced.0c00832
  5. Pirdashti M., Bozorgzadeh A., Ketabi M. et al. // Fluid Phase Equilib. 2019. V. 485. P. 158. https://doi.org/10.1016/j.fluid.2018.12.021
  6. Pirdashti M., Heidari Z., Abbasi F.N. et al. // J. Chem. Eng. Data. 2021. V. 66. № 3. P. 1425. https://doi.org/10.1021/acs.jced.0c01029
  7. Huang Q., Li M., Wang L. et al. // J. Chem. Thermodyn. 2020. V. 150. P. 106221. https://doi.org/10.1016/j.jct.2020.106221
  8. Jimenez Y.P., Galleguillos H.R., Morales J.W. et al. // J. Mol. Liq. 2019. V. 286. P. 110922. https://doi.org/10.1016/j.molliq.2019.110922
  9. Barani A., Pirdashti M., Heidari Z. et al. // Fluid Phase Equilib. 2018. V. 459. P. 1. https://doi.org/10.1016/j.fluid.2017.11.037
  10. Maolan Li, Wang L., Zheng H. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. № 13. P. 2586. https://doi.org/10.1134/S0036024419130144
  11. Shahrokhi B., Pirdashti M., Arzideh S.M. // J. Dispersion Sci. Technol. 2022. V. 43. № 11. P. 1603. https://doi.org/10.1080/01932691.2021.1878036
  12. Rodrigues Barreto C.L., de Sousa Castro S., Cardozo de Souza Júnior E. et al. // J. Chem. Eng. Data. 2019. V. 64. № 2. P. 810. https://doi.org/10.1021/acs.jced.8b01113
  13. Sadeghi R., Jahani F. // J. Phys. Chem. B. 2012. V. 116. № 17. P. 5234. https://doi.org/10.1021/jp300665b
  14. Graber T.A., Taboada M.E., Asenjo J.A. et al. // J. Chem. Eng. Data. 2001. V. 46. № 3. P. 765. https://doi.org/10.1021/je000372n
  15. Graber T.A., Taboada M.E., Cartón A. et al. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 182. https://doi.org/10.1021/je990225t
  16. Jimenez Y.P., Galleguillos H.R. // J. Chem. Thermodyn. 2011. V. 43. № 11. P. 1573. https://doi.org/10.1016/j.jct.2011.05.007
  17. Zakhodyaeva Y.A., Rudakov D.G., Solov’ev V.O. et al. // J. Chem. Eng. Data. 2019. V. 64. № 3. P. 1250. https://doi.org/10.1021/acs.jced.8b01138
  18. Федорова М.И., Заходяева Ю.А., Зиновьева И.В. и др. // Изв. АН. Сер. хим. 2020. Т. 69. № 7. С. 1344. https://doi.org/10.1007/s11172-020-2908-2
  19. Levina A.V., Fedorov A.Ya., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012023. https://doi.org/10.1088/1757-899X/1212/1/012023
  20. Fedorov A., Levina A.V., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012012. https://doi.org/10.1088/1757-899X/1212/1/012012
  21. Levina A.V., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012013. https://doi.org/10.1088/1757-899X/1212/1/012013
  22. Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Теор. основы хим. технологии. 2020. Т. 54. № 4. С. 475.
  23. Zakhodyaeva Y.A., Zinov’eva I.V., Tokar E.S. et al. // Molecules. 2019. V. 24. № 22. P. 4078. https://doi.org/10.3390/molecules24224078
  24. Харченко А.В., Егорова Е.М., Гаркушин И.К. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 224. https://doi.org/10.31857/S0044457X22020064
  25. Подвальная Н.В., Захарова Г.С. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 300. https://doi.org/10.31857/S0044457X22601389
  26. Плющев В.Е., Степин Б.Д. Химия и технология соединений лития, рубидия и цезия. М.: Химия, 1970.
  27. Yu X., Lin W., Li M. et al. // J. Chem. Thermodyn. 2019. V. 135. P. 45. https://doi.org/10.1016/j.jct.2019.03.020
  28. Lin W., Zheng H., Shuai C. et al. // J. Solution Chem. 2020. V. 47. P. 1382. https://doi.org/10.1007/s10953-020-00985-1
  29. Mcgarvey P.W., Hoffmann M.M. // Tenside Surf. Det. 2018. V. 55. № 3. P. 203. https://doi.org/10.3139/113.110555
  30. Юхно Г.Д., Красноперова А.П. // Журн. физ. химии. 2013. Т. 87. № 12. С. 2074. https://doi.org/10.1134/s0036024413120273
  31. Hu M., Zhai Q., Jiang Y. et al. // J. Chem. Eng. Data. 2004. V. 49. № 5. P. 1440. https://doi.org/10.1021/je0498558
  32. Ma B., Hu M., Li S. et al. // J. Chem. Eng. Data. 2005. V. 50. № 3. P. 792. https://doi.org/10.1021/je049757m
  33. Chamberlin R.M., Abney K.D. // J. Radioanal. Nucl. Chem. 1999. V. 240. № 2. P. 547. https://doi.org/10.1007/bf02349412
  34. Черкасов Д.Г., Курский В.Ф., Ильин К.К. // Журн. неорган. химии. 2008. Т. 53. № 1. C. 146.
  35. Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. М.: Наука, 1976.
  36. Ильин К.К., Черкасов Д.Г. Топология фазовых диаграмм тройных систем соль–два растворителя с всаливанием–высаливанием. Саратов: Изд-во Сарат. ун-та, 2020.
  37. Трейбал Р. Жидкостная экстракция / Пер. с англ. под ред. Кагана С.З. М.: Химия, 1966.
  38. Зубарев К.Е., Климова Я.С., Суворова Н.И. и др. // XII Междунар. Курнаковское совещ. по физ.-хим. анализу. Сб. статей. СПб: Политех-пресс, 2022. 116 c.
  39. Киргинцев А.Н., Трушникова Л.Н., Лаврентьева В.Г. Растворимость неорганических веществ в воде: Справочник. Л.: Химия, 1972.
  40. Справочник по растворимости: Бинарные системы / Под ред. Кафарова В.В. М.; Л.: Изд-во АН СССР, 1961, 1962. Т. 1. кн. 1, 2.
  41. Черкасов Д.Г., Курский В.Ф., Синегубова С.И. и др. // Журн. неорган. химии. 2009. Т. 54. № 6. С. 1032.
  42. Смотров М.П., Черкасов Д.Г., Ильин К.К. // Журн. неорган. химии. 2017. Т. 62. № 3. С. 375.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».