Formation of compounds with alunite-like structure in the bi2o3–al2o3–fe2o3–p2o5–h2o system under hydrothermal conditions
- Authors: Elovikov D.P.1,2, Proskurina O.V.3,4, Gusarov V.V.1,3
-
Affiliations:
- Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute" — Institute of Silicate Chemistry
- St. Petersburg Electrotechnical University “LETI”
- Ioffe Institute
- St. Petersburg State Technological Institute
- Issue: Vol 70, No 7 (2025)
- Pages: 867-875
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/306856
- DOI: https://doi.org/10.31857/S0044457X25070039
- EDN: https://elibrary.ru/joddwf
- ID: 306856
Cite item
Abstract
Under hydrothermal conditions in the Bi2O3-Al2O3–Fe2O3–P2O5–H2O system, variable-composition compounds Bi(Al1–xFex)3(PO4)2(OH)6 with an alunite-like structure were obtained. Based on experimental data on the miscibility limits of components in the (1–x)BiAl3(PO4)2(OH)6–xBiFe3(PO4)2(OH)6 system, the parameters of the subregular solution model (Q1 = 6.395, Q2 = 8.987 kJ/mol) were determined, and spinodal and binodal decomposition curves of solid solutions with an alunite-like structure were calculated. Thermodynamic calculations showed that individual BiAl3(PO4)2(OH)6 and BiFe3(PO4)2(OH)6 can form at temperatures above 122 and 170°C, respectively, which is consistent with the experimental data obtained in this study, indicating the absence of compounds with alunite-like structure at 160°C in the range 0.8 < x ≤ 1.
Keywords
About the authors
D. P. Elovikov
Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute" — Institute of Silicate Chemistry; St. Petersburg Electrotechnical University “LETI”
Email: syncdima@mail.ru
St. Petersburg, 199034 Russia; St. Petersburg, 197022 Russia
O. V. Proskurina
Ioffe Institute; St. Petersburg State Technological Institute
Email: syncdima@mail.ru
St. Petersburg, 194021 Russia; St. Petersburg, 190013 Russia
V. V. Gusarov
Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute" — Institute of Silicate Chemistry; Ioffe Institute
Author for correspondence.
Email: syncdima@mail.ru
St. Petersburg, 199034 Russia; St. Petersburg, 194021 Russia
References
- Sunyer A., Currubí M., Viñals J. // J. Hazar. Mater. 2013. V. 261. P. 559. https://doi.org/10.1016/j.jhazmat.2013.08.011
- Kolitsch U. // Can. Mineral. 2015. V. 53. № 5. P. 833. https://doi.org/10.3749/canmin.1400103
- Jones F. // Minerals. 2017. V. 7. № 6. P. 90. https://doi.org/10.3390/min7060090
- Wang L., Xue N., Zhang Y., Hu P. // Minerals. 2021. V. 11. № 8. P. 892. https://doi.org/10.3390/min11080892
- Cruells M., Roca A. // Metals. 2022. V. 12. № 5. P. 802. https://doi.org/10.3390/met12050802
- Luo Z., Mu W., Zhou X., Chen Z. // Environ.Technol. 2022. V. 43. № 19. P. 2881. https://doi.org/10.1080/09593330.2021.1908428
- Kolitsch U., Ping A. // J. Mineral. Petrol. Sci. 2001. V. 96. P. 67. https://doi.org/10.2465/jmps.96.67
- Monteagudo J.M., Durán A., Martín I.S. et al. // J. Chem. Technol. Biotechnol. 2005. V. 81. P. 262. https://doi.org/10.1002/jctb.1368
- Aguilar-Carrillo J., Villalobos M., Pi-Puig T. et al. // Environ. Sci.: Processes. Impacts. 2018. V. 20. № 2. P. 354. https://doi.org/10.1039/C7EM00426E
- Owen D.N., Cook N.J., Rollog M. et al. // J. Am. Mineral. 2019. V. 104. P. 1806. https://doi.org/10.2138/am-2019-7116
- Hudson-Edwards K.A. // Am. Mineral. 2019. V. 104. № 5. P. 633. https://doi.org/10.2138/am-2019-6591
- Luo W., Kelly S.D., Kemner K.M. et al. // Environ. Sci. Technol. 2009. V. 43. № 19. P. 7516. https://doi.org/10.1021/es900731a
- Lee S., ul Hassan M., Ryu H.J. // Sustainable Mater. Technol. 2021. V. 30. P. e00356. https://doi.org/10.1016/j.susmat.2021.e00356
- Rakhimova N. // Sustainability. 2022. V. 15. № 1. P. 689. https://doi.org/10.3390/su15010689
- Zhou Y., Wang T., Fan F. et al. // Adv. Explor. Indicat. Mineral. 2022. V. 12. № 8. P. 958. https://doi.org/10.3390/min12080958
- Morales-Leal J.E., Campos E., Kouzmanov K. et al. // Miner. Deposita. 2023. V. 58. P. 593. https://doi.org/10.1007/s00126-022-01149-5
- Bouvart T., Poot J., Dekoninck A. et al. // Geochemistry. 2024. V. 84. № 4. P. 126204. https://doi.org/10.1016/j.chemer.2024.126204
- Brophy G.P., Scott E.S., Snellgrove R.A. // Am. Mineral.: J. Earth Planetary Mater. 1962. V. 47. № 1–2. P. 112.
- Stoffregen R.E., Alpers C.N., Jambor J.L. // Rev. Мineral. Geochem. 2000. V. 40. № 1. P. 453. https://doi.org/10.2138/rmg.2000.40.9
- Kim Y., Wolf A.S., Becker U. // Geochim. Cosmochim. Acta. 2019. V. 248. P. 138. https://doi.org/10.1016/j.gca.2018.11.017
- Grigg A.R.C., Notini L., Kaegi R. et al. // ACS Earth Space Chemistry. 2024. V. 8. № 2. P. 194. https://doi.org/10.1021/acsearthspacechem.3c00174
- Gilkes R.J., Palmer B. // J. Mineral. Mag. 1983. V. 47. P. 221. https://doi.org/10.1180/minmag.1983.047.343.13
- Hikichi Y., Ohsato H., Miyamoto M. // J. Mineral. Soc. Jpn. 1989. V. 19. P. 67. https://doi.org/10.2465/gkk1952.19.67
- Schwab R.G., Pimpl T., Schukow H. et al. // Neues Jahrbuch für Mineralogie. 2004. V. 9. P. 385. https://doi.org/10.1127/0028-3649/2004/2004-0385
- Enikeeva M.O., Zhidomorova K.A., Danilovich D.P. et al. // Nanosyst.: Phys. Chem. Math. 2024. V. 15. № 6. P. 781. https://doi.org/10.17586/2220-8054-2024-15-6-781-792
- Филиппова А.Д., Румянцев А.А., Баранчиков А.Е. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 706. https://doi.org/10.31857/S0044457X22060083
- Svinolupova A.S., Lomakin M.S., Kirillova S.A. et al. // Nanosyst.: Phys. Chem. Math. 2020. V. 11. № 3. P. 338. https://doi.org/10.17586/2220-8054-2020-11-3-338-344
- Бачина А.К., Альмяшева О.В. Попков В.И. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 761. https://doi.org/10.31857/S0044457X22060022
- Enikeeva M.O., Proskurina O.V., Danilovich D.P. et al. // Nanosyst.: Phys. Chem. Math. 2020. V. 11. P. 705. https://doi.org/10.17586/2220-8054-2020-11-6-705-715
- Ломакин М.С., Проскурина О.В., Левин А.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 750. https://doi.org/10.31857/S0044457X22060149
- Еникеева М.О., Кенес К.М., Проскурина О.В. и др. // Журн. прикл. химии. 2020. Т. 93. № 4. С. 529. https://doi.org/10.31857/S0044461820040076
- Zlobin V., Nevedomskiy V., Tomkovich M. et al. // Nano- Structures & Nano-Objects. 2024. V. 37. P. 101076. https://doi.org/10.1016/j.nanoso.2023.101076
- Егорышева А.В., Голодухина С.В., Либерман Е.Ю. и др. // Журн. неорган. химии. 2024. Т. 69. № 7. С. 947. https://doi.org/10.31857/S0044457X24070018
- Nikolaev A.I., Gerasimova L.G., Maslova M.V. et al. // Synthesis and application, IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 704. https://doi.org/10.1088/1757-899X/704/1/ 012003
- Gavryushkin P.N., Thomas V.G., Bolotina N.B. et al. // J. Cryst. Growth. 2016. V. 16. № 4. P. 1893. https://doi.org/10.1021/acs.cgd.5b01398
- Thomas V.G., Demin S.P., Foursenko D.A. et al. // J. Cryst. Growth. 1999. V. 206. № 3. P. 203. https://doi.org/10.1016/S0022-0248(99)00312-7
- Еловиков Д.П., Томкович М.В., Левин А.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 782. https://doi.org/10.31857/S0044457X2206006X
- Elovikov D.P., Proskurina O.V., Tomkovich M.V. et al. // Nanosyst.: Phys. Chem. Math. 2022. V. 13. № 6. P. 662. https://doi.org/10.17586/2220-8054-2022-13-6-662-667
- Van Wambeke L. // Bull. Minéral. 1975. V. 98. № 6. P. 351. https://doi.org/10.3406/bulmi.1975.7016
- Morimitsu Y., Shirose Y., Enju S. et al. // J. Mineral. Petrol. Sci. 2021. V. 116. № 2. P. 104. https://doi.org/10.2465/jmps.201130d
- Elovikov D.P., Nikiforova K.O., Tomkovich M.V. et al. // Inorg. Chim. Acta. 2024. V. 561. P. 121856. https://doi.org/10.1016/j.ica.2023.121856
- Liu Y., Li Z., You Y. // RSC Adv. 2017. V. 7. P. 51281. https://doi.org/10.1039/C7RA09186A
- Guo L., Li L., Guo Y. et al. // IOP Conf. Series: Mater. Sci. Eng., IOP Publishing. 2018. V. 382. № 5. P. 382. https://doi.org/10.1088/1757-899X/382/5/052018
- Eremin O.V., Yurgenson G.A., Solodukhina M.A. et al. // Mineralogy of Technogenesis. 2018. V. 19. P. 103.
- Gaboreau S., Vieillard P. // Geochim. Cosmochim. Acta. 2004. V. 68. P. 3307. https://doi.org/10.1016/j.gca.2003.10.040.
- Baloch A.A., Alqahtani S.M., Mumtaz F. et al. // Phys. Rev. Mater. 2021. V. 5. № 4. P. 043804. https://doi.org/10.1103/PhysRevMaterials.5.043804
- Торопов Н.А., Барзаковский В.П., Лапин В.В. и др. Диаграммы состояния силикатных систем: Справочник. АН СССР. Ин-т химии силикатов им. И.В. Гребенщикова. Двойные системы / 22 см. 2-е изд., доп. Ленинград: Наука, 1969.
- Elovikov D.P., Osminina A.A. // Nanosyst.: Phys. Chem. Math. 2024. V. 15. № 3. P. 361. https://doi.org/10.17586/2220-8054-2024-15-3-361-368
- Phu N.D., Ngo D.T., Hoang L.H. et al. // J. Phys. D: Appl. Phys. 2011. V. 44. № 34. P. 345002. https://doi.org/10.1088/0022-3727/44/34/345002
- Machala L., Zboril R., Gedanken A. // J. Phys. Chem. B. 2007. V. 111. № 16. P. 4003. https://doi.org/10.1021/jp064992s
- Drüppel K., Hösch A., Franz G. // Am. Mineral. 2007. V. 92. № 10. P. 1695. https://doi.org/10.2138/am.2007.2487
- Barros I.R., Benincá C., Zanoelo E.F. // Environ. Technol. 2024. V. 45. № 21. P. 4266. https://doi.org/10.1080/09593330.2023.2246643
Supplementary files
