Thermal decomposition of [M(NH3)6][Fe(CN)6] (M = Ir, Rh) in different atmospheres. Crystal structure of [Rh(NH3)6][Fe(CN)6]

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The double complex salt [Rh(NH3)6][Fe(CN)6] is structurally characterized. The thermal behavior of the salt [Rh(NH3)6][Fe(CN)6] in reducing (He/H2), inert (He) and oxidizing (Ar/O2) atmospheres is studied in detail. The intermediate product of the decomposition of double complex salts [M(NH3)6][Fe(CN)6] (M = Ir, Rh) is an X-ray amorphous polymer compound with the gross composition FeM(CN)5. The final product of the decomposition of [Rh(NH3)6][Fe(CN)6] in reducing and inert atmospheres is an ordered FeRh alloy. In an oxidizing atmosphere, a solid solution of Fe2O3 and Rh2O3 oxides is predominantly formed. The obtained data allow us to consider double complex salts as precursors for obtaining iron-iridium and iron-rhodium alloys or oxide systems based on them.

Sobre autores

A. Popov

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: apopov@niic.nsc.ru
3 Lavrentyev Ave., Novosibirsk, 630090 Russia

P. Plyusnin

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: apopov@niic.nsc.ru
3 Lavrentyev Ave., Novosibirsk, 630090 Russia

P. Tyapkin

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: apopov@niic.nsc.ru
Novosibirsk, 630128 Russia

T. Sukhikh

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: apopov@niic.nsc.ru
3 Lavrentyev Ave., Novosibirsk, 630090 Russia

L. Kibis

Boreskov Institute of Catalysis SB RAS

Email: apopov@niic.nsc.ru
5 Lavrentyev Ave., Novosibirsk, 630090 Russia

S. Korenev

Nikolaev Institute of Inorganic Chemistry SB RAS

Autor responsável pela correspondência
Email: apopov@niic.nsc.ru
3 Lavrentyev Ave., Novosibirsk, 630090 Russia

Bibliografia

  1. Hughes A.E., Haque N., Northey S.A. et al. // Resources. 2021. V. 10. № 9. P. 93. https://doi.org/10.3390/resources10090093
  2. Avisar S., Shvets A., Shner Y. et al. // J. Alloys Compd. 2023. V. 936. P. 168326. https://doi.org/10.1016/j.jallcom.2022.168326
  3. Niu H., Wang Q., Huang C. et al. // Appl. Sci. 2023. V. 13. № 4. P. 2177. https://doi.org/10.3390/app13042177
  4. Mladenović D., Daş E., Santos D.M.F. et al. // Materials (Basel). 2023. V. 16. № 9. P. 3388. https://doi.org/10.3390/ma16093388
  5. Гимаев Р.Р., Ваулин А.А., Губкин А.Ф. и др. // Физика металлов и металловедение. 2020. Т. 121. № 9. С. 907. https://doi.org/10.31857/S0015323020090041
  6. Gibbons J., Dohi T., Amin V.P. et al. // Phys. Rev. Appl. 2022. V. 18. № 2. P. 024075. https://doi.org/10.1103/PhysRevApplied.18.024075
  7. Chen M.T., Duan J.J., Feng J.J. et al. // J. Colloid Interface Sci. 2022. V. 605. P. 888. https://doi.org/10.1016/j.jcis.2021.07.101
  8. Xu Q., Wang P., Zakia M. et al. // Appl. Phys. A. 2023. V. 129. P. 514. https://doi.org/10.1007/s00339-023-06775-y
  9. Zhang Z., Xia Y., Ye M. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 27. P. 13371. https://doi.org/10.1016/j.ijhydene.2022.02.078
  10. Yu Z., Si C., Lagrow A.P. et al. // ACS Catal. 2022. V. 12. № 15. P. 9397. https://doi.org/10.1021/acscatal.2c01861
  11. Choong C.K., Du Y., Poh C.K. et al. // Appl. Catal., B. 2024. V. 345. P. 123630. https://doi.org/10.1016/j.apcatb.2023.123630
  12. Бородин А.О., Филатов Е.Ю., Куратьева Н.В. и др. // Журн. структур. химии. 2023. Т. 64. № 11. C. 118092. https://doi.org/10.26902/JSC_id118092
  13. Vorobyeva S.N., Rudzis Z.V., Sukhikh T.S. et al. // New J. Chem. 2024. V. 48. № 36. P. 15894. https://doi.org/10.1039/D4NJ03084B
  14. Garkul I.A., Zadesenets A.V., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2024. V. 82. P. 611. https://doi.org/10.1016/j.ijhydene.2024.07.446
  15. Zadesenets A.V., Garkul I.A., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2023. V. 48. № 59. P. 22428. https://doi.org/10.1016/j.ijhydene.2023.01.365
  16. Lagunova V., Rubilkin P., Filatov E. et al. // New J. Chem. 2024. V. 48. № 4. P. 1578. https://doi.org/10.1039/D3NJ05311C
  17. Руднева Ю.В., Коренев С.В. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1181. https://doi.org/10.31857/S0044457X24080112
  18. Гаркуль И.А. Двойные комплексные оксалаты Pd и Rh c 3d-металлами как предшественники биметаллических систем: дис. канд. хим. наук, Новосибирск, 2023. 135 с.
  19. Kohata S., Asakawa M., Maeda T. et al. // Anal. Sci. 1986. V. 2. № 4. P. 325. https://doi.org/10.2116/analsci.2.325
  20. Варыгин А.Д., Попов А.А., Громилов С.А. и др. // Журн. структур. химии. 2023. Т. 64. № 7. С. 113132. https://doi.org/10.26902/JSC_id113132
  21. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений / Пер. с англ. под ред. Пентина Ю.А. М.: Мир, 1991.
  22. Bruker APEX3 software suite: APEX3 v.2019.1-0, SADABS v.2016/2, SAINT v.8.40a. Madison, WI, USA: Bruker Nano, 2005–2018.
  23. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  24. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  26. NETZSCH Proteus Thermal Analysis, v. 6.1.0. Selb. Bayern, Germany: NETZSCH-Gerätebau GmbH, 2013.
  27. Powder Diffraction File, PDF-2/Release 2009, International Centre for Diffraction Data, USA (2009).
  28. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. № 3. P. 301. https://doi.org/10.1107/S0021889895014920
  29. Lommel J.M., Kouvel J.S. // J. Appl. Phys. 1967. V. 38. № 3. P. 1263. https://doi.org/10.1063/1.1709570
  30. Ohtani Y., Hatakeyama I. // J. Appl. Phys. 1993. V. 74. № 5. P. 3328. https://doi.org/10.1063/1.354557
  31. Miyajima H., Yuasa S. // J. Magn. Magn. Mater. 1992. V. 104–107. № 3. P. 2025. https://doi.org/10.1016/0304-8853(92)91652-A
  32. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. № 2012. P. 178. https://doi.org/10.1063/1.4759488
  33. Gorol M., Mösch-Zanetti N.C., Noltemeyer M. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. № 11. P. 2318. https://doi.org/10.1002/1521-3749(200011)626:11<2318::AID-ZAAC2318>3.0.CO;2-W
  34. Печенюк С.И., Домонов Д.П., Шимкин А.А. и др. // Изв. АН. Сер. хим. 2015. № 2. С. 322.
  35. Домонов Д.П., Куратьева Н.В., Печенюк С.И. // Журн. структур. химии. 2011. Т. 52. № 2. С. 365.
  36. Moulder J.F., Stickle W.F., Sobol P.E. et al. // Handbook of X-ray Photoelectron Spectroscopy, Minnesota, USA: Perkin-Elmer Corp., Eden Prairie, 1992.
  37. Mansour A.N., Ko J.K., Waller G.H. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. P. 103002. https://doi.org/10.1149/2162-8777/ac2591
  38. Le Vot S., Roué L., Bélanger D. // Electrochim. Acta. 2012. V. 59. P. 49. https://doi.org/10.1016/j.electacta.2011.10.019
  39. Peuckert M. // Surf. Sci. Lett. 1984. V. 144. № 2–3. P. A342. https://doi.org/10.1016/0167-2584(84)90295-0
  40. Grosvenor A.P., Kobe B.A., Biesinger M.C. et al. // Surf. Interface Anal. 2004. V. 36. № 12. P. 1564. https://doi.org/10.1002/sia.1984
  41. McIntyre N.S., Zetaruk D.G. // Anal. Chem. 1977. V. 49. № 11. P. 1521. https://doi.org/10.1021/ac50019a016
  42. Mills P., Sullivan J.L. // J. Phys. D. Appl. Phys. 1983. V. 16. № 5. P. 723. https://doi.org/10.1088/0022-3727/16/5/005
  43. Muhler M., Schlogl R., Ertl G. // J. Catal. 1992. V. 138. № 2. P. 413. https://doi.org/10.1016/0021-9517(92)90295-S
  44. Ganguli S., Das S., Bhattacharya M. // J. Radioanal. Nucl. Chem. 1998. V. 232. № 1–2. P. 229. https://doi.org/10.1007/BF02383744
  45. Reguera E., Bertran J.F., Miranda J. et al. // Hyperfine Interact. 1993. V. 77. № 1. P. 1. https://doi.org/10.1007/BF02320293
  46. Balmaseda J., Reguera E., Gomez A. et al. // J. Phys. Chem. B. 2003. V. 107. № 41. P. 11360. https://doi.org/10.1021/jp027678g
  47. Reguera E., Fernández-Bertrán J., Dago A. et al. // Hyperfine Interact. 1992. V. 73. № 3–4. P. 295. https://doi.org/10.1007/BF02418604
  48. Jackson W.G., Rahman A.F.M.M. // Inorg. Chem. 1990. V. 29. № 17. P. 3247. https://doi.org/10.1021/ic00342a041

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».