The phase composition of Ni1–2ХMnХCoХOY precursors, where x = 0–0.5, obtained in the solution combustion synthesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solution combustion synthesis obtained precursors of the composition Ni1–2хMnхCoхOy, where x = 0–0.5. The phase composition of the precursors was confirmed by X-ray phase analysis. The morphology of the samples was studied by scanning electron microscopy in combination with energy dispersion analysis. The change in the phase composition of precursors of mixed d-metal oxides from the synthesis conditions and the choice of annealing temperatures has been studied. The dependences of the content of NiO, Ni, MnCo2O4 in the composition of Ni1–2хMnхCoхOy precursors after SCS, after 550°C were studied. The dependence of the parameter a of the crystal lattice of the spinel phase on the composition of the sample after annealing at 550, 800 and 900°C has been established. Ni1–2хMnхCoхOy with x = 0.1–0.33 is monophase after annealing at 550°C.

About the authors

K. V. Nefedova

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: nefedova@ihim.uran.ru
Pervomaiskaya St., 91, Ekaterinburg, 620990 Russia

L. V. Ermakova

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: nefedova@ihim.uran.ru
Pervomaiskaya St., 91, Ekaterinburg, 620990 Russia

V. D. Zhuravlev

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Email: nefedova@ihim.uran.ru
Pervomaiskaya St., 91, Ekaterinburg, 620990 Russia

T. A. Patrusheva

The Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: nefedova@ihim.uran.ru
Pervomaiskaya St., 91, Ekaterinburg, 620990 Russia

References

  1. Guo J., Jiao L.F., Yuan H.T. et al. // Electrochim. Acta. 2006. V. 51. P. 3731. https://doi.org/10.1016/j.electacta.2005.10.037
  2. Kumar P.S., Sakunthala A., Reddy M.V. et al. // J. Solid State Electrochem. 2016. V. 20. P. 1865. https://doi.org/10.1007/s10008-015-3029-y
  3. Huang Z.-D., Liu X.-M., Zhang B. et al. // Scripta Mater. 2011. V. 64. P. 122. https://doi.org/10.1016/j.scriptamat.2010.09.018
  4. Samarasingha P., Tran-Nguyen D.-H., Behm M., Wijayasinghe A. // Electrochim. Acta. 2008. V. 53. P. 7995. https://doi.org/10.1016/j.electacta.2008.06.003
  5. Liang L., Du K., Peng Z. et al. // Electrochim. Acta. 2014. V. 130. P. 82. https://doi.org/10.1016/j.electacta.2014.02.100
  6. Elong K., Kasim M.F., Azahidi A., Osman Z. // Mater. Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.02.283
  7. Zhuravlev V.D., Pachuev A.V., Nefedova K.V., Ermakova L.V. // Int. J. Self-Propag. High-Temp. Synth. 2018. V. 27. P. 154. https://doi.org/10.3103/S1061386218030147
  8. Lanina E.V., Zhuravlev V.D., Ermakova L.V. et al. // Electrochim. Acta. 2016. V. 212. P. 810. https://doi.org/10.1016/j.electacta.2016.07.010
  9. Остроушко А.А., Гагарин И.Д., Кудюков Е.В. и др. // Журн. неорган. химии. 2024. Т. 69. № 2. С. 143. https://doi.org/10.31857/S0044457X24020013
  10. Смирнова М.Н., Кондратьева О.Н., Никифорова Г.Е. и др. // Журн. неорган. химии. 2024. Т. 69. № 8. C. 1095. https://doi.org/10.31857/S0044457X24080012
  11. Нефедова К.В. Синтез оксида литий-никель-марганец-кобальта для литий-ионных аккумуляторов (ЛИА) в реакциях горения: дис…канд. хим. наук: 1.4.15. Екатеринбург, 2023. 130 с.
  12. Zhang S., Deng C., Fu B.L. et al. // Powder Technol. 2010. V. 198. P. 373. https://doi.org/10.1016/j.powtec.2009.12.002
  13. Li L., Song S., Zhang X. et al. // J. Power Sources. 2010. V. 272. P. 922. https://doi.org/10.1016/j.jpowsour.2014.08.063
  14. Martin De Vidales J.L., Garcia-Chain P., Rojas R.M. et al. // J. Mater. Sci. 1998. V. 33. P. 1491. https://doi.org/10.1023/A:1004351809932
  15. Duran P., Tartaj J., Rubio F. et al. // Ceram. Int. 2005. V. 31. P. 599. https://doi.org/10.1016/j.ceramint.2004.07.007
  16. Mhin S., Han H., Kim K.M. et al. // Ceram. Int. 2016. V. 42. P. 13654. https://doi.org/10.1016/j.ceramint.2016.05.161
  17. Журавлев В.Д., Халиуллин Ш.М., Ермакова Л.В., Бамбуров В.Г. // Журн. неорган. химии. 2020. Т. 65. № 10. С. 1317. https://doi.org/10.31857/S0044457X20100232
  18. Hadken S., Kalimila M.T., Rathkanthiwar S. et al. // Ceram. Int. 2015. V. 41. P. 14949. https://doi.org/10.1016/j.ceramint.2015.08.037
  19. Ashok A., Kumar A., Bhosale R.R. et al. // Ceram. Int. 2016. V. 42. P. 12771. https://doi.org/10.1016/j.ceramint.2016.05.035
  20. Zhao H., Liu L., Hu Z. et al. // Mater. Res. Bull. 2016. V. 77. P. 265. https://doi.org/10.1016/j.materresbull.2016.01.049
  21. Pendashteh A., Palma J., Anderson M., Marcilla R. // RSC Advances. 2016. V. 6. P. 28970. https://doi.org/10.1039/C6RA00960C
  22. Kim B.C., Rajesh M., Jang H.S. et al. // J. Alloys Compd. 2016. V. 674. P. 376. https://doi.org/10.1016/j.jallcom.2016.03.028
  23. Meena P.L., Kumar R., Sreenivas K. // Int. J. Phys., Chem. Math. Sci. 2014. V. 3. P. 7.
  24. Karuppaiah M., Sakthivel P., Asaithambi S. et al. // Ceram. Int. 2019. V. 45. P. 4298. https://doi.org/10.1016/j.ceramint.2018.11.104
  25. El Horr N., Guillemet-Fritsch S., Rousset A. et al. // J. Eur. Ceram. Soc. 2014. V. 34. P. 317. https://doi.org/10.1016/j.jeurceramsoc.2013.08.010
  26. Gaur A., Sglavo V.M. // J. Eur. Ceram. Soc. 2014. V. 34. P. 2391. https://doi.org/10.1016/j.jeurceramsoc.2014.02.012
  27. Han H., Lee J.S., Lim J. et al. // Ceram. Int. 2016. V. 42. P. 17168. https://doi.org/10.1016/j.ceramint.2016.08.006
  28. Barrett C.A., Evan E.B. // J. Am. Ceram. Soc. 1964. V. 47. P. 533. https://doi.org/10.1111/j.1151-2916.1964.tb13806.x
  29. Alburquenquea D., Troncoso L., Denardin J.C. et al. // Phys. Chem. Solids. 2019. V. 134. P. 89. https://doi.org/10.1016/j.jpcs.2019.05.031
  30. Dhandapani P., Nayak P.K., Maruthapillai A. // Mater. Chem. Phys. 2023. V. 297. P. 127287. https://doi.org/10.1016/j.matchemphys.2022.127287
  31. Ma Y., Bahout M., Peña O. et al. // Bol. Soc. Espan. Ceram. Vidrio. 2004. V. 43. P. 663. https://doi.org/10.3989/cyv.2004.v43.i3.472
  32. Wang W., Liu X., Gao F. et al. // Ceram. Int. 2007. V. 33. P. 459. https://doi.org/10.1016/j.ceramint.2005.10.010
  33. Deganello F., Tyagi A.K. // Prog. Cryst. Growth Charact. Mater. 2018. V. 64. P. 23. https://doi.org/10.1016/j.pcrysgrow.2018.03
  34. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2/ (accessed 15.02.2024).
  35. Liu L., Zhou Z., Liu X. et al. // Ceram. Int. 2021. V. 47. P. 35048. https://doi.org/10.1016/j.ceramint.2021.09.046
  36. Журавлев В.Д., Ермакова Л.В., Халиуллин Ш.М. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 717. https://doi.org/10.31857/S0044457X22060265
  37. Нефедова К.В., Журавлев В.Д. // Перспективные материалы. 2011. С. 380.
  38. Aukrust E., Muan A. // J. Am. Chem. Soc. 1963. V. 46. P. 511. https://doi.org/10.1111/j.1151-2916.1963.tb13790.x
  39. Adamczyk A., Bik M., Kruk A. et al. // J. Therm. Anal. Calorim. 2024. V. 149. P. 2561. https://doi.org/10.1007/s10973-023-12839-1
  40. Ben-Barak I., Obrovac M.N. // J. Electrochem. Soc. 2024. V. 171. P. 040535. https://doi.org/10.1149/1945-7111/ad3aa9
  41. Pimenta V., Sathiya M., Batuk D. et al. // Chem. Mater. 2017. V. 29. P. 9923. https://doi.org/10.1021/acs.chemmater.7b03230

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).