Hydrophilic colloidal CdS particles: synthesis, stabilization mechanism, spectral, optical and photocatalytic properties

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Hydrophilic colloidal particles of cadmium sulfide CdS were obtained by chemical condensation. To form a hydrophilic shell an approach based on the formation of a micelle-like structure around CdS nanoparticles was used. The CdS micelle were formed due to the formation of stable complexonates with ethylenediaminetetraacetic acid anions by surface cadmium atoms. The mechanism of aggregation stability of CdS nanoparticles in aqueous solutions was studied. Optical, spectral and photocatalytic properties of both nanostructured powders agglomerated from hydrophobic CdS nanoparticles and isolated hydrophilic CdS nanoparticles in a colloidal solution were investigated.

Авторлар туралы

N. Kozhevnikova

Institute of Solid State Chemistry UB RAS; Ural Federal University

Email: kozhevnikova@ihim.uran.ru
Ekaterinburg, 620990 Russia; Ekaterinburg, 620002 Russia

I. Baklanova

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Ekaterinburg, 620990 Russia

A. Enyashin

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Ekaterinburg, 620990 Russia

A. Tyutyunnik

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Ekaterinburg, 620990 Russia

A. Ushkov

Ural Federal University

Email: kozhevnikova@ihim.uran.ru
Ekaterinburg, 620002 Russia

L. Buldakova

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Ekaterinburg, 620990 Russia

M. Yanchenko

Institute of Solid State Chemistry UB RAS

Хат алмасуға жауапты Автор.
Email: kozhevnikova@ihim.uran.ru
Ekaterinburg, 620990 Russia

Әдебиет тізімі

  1. Бричкин С.Б., Разумов В.Ф. // Успехи химии. 2016. Т. 85. № 12. С. 1297. https://doi.org/10.1070/RCR4656
  2. Pham D.T., Quan T., Mei S. et al. // Curr. Opin. Green Sust. Chem. 2022. V. 34. P. 100596. https://doi.org/10.1016/j.cogsc.2022.100596
  3. Mamiyev Z., Balayeva N.O. // Catalysts. 2022. V. 12. P. 1316. https://doi.org/10.3390/catal12111316
  4. Li Q., Li X., Yu J. // Int. Sci. Techn. 2020. V. 31. P. 313. https://doi.org/10.1016/B978-0-08-102890-2.00010-5
  5. Cheng L., Xiang Q., Liao Y. et al. // Energy Environ. Sci. 2018. V. 11. P. 1362. https://doi.org/10.1039/C7EE03640J
  6. Мусихин С.Ф., Александрова О.А., Лучинин В.В. и др. // Биотехносфера. 2012. № 5-6. С. 40. https://cyberleninka.ru/article/n/poluprovodnikovye-nanokristally-v-biomeditsinskih-issledovaniyah/viewer
  7. Han K., Yoon S., Chung W.J. // Int. J. Appl. Glass Sci. 2015. V. 6. № 2. P. 103. https://doi.org/10.1111/ijag.12115
  8. Смагин В.П., Давыдов Д.А., Унжакова Н.М. и др. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1734. https://doi.org/10.7868/S0044457X15120247
  9. Сумм Б.Д., Иванова Н.И. // Успехи химии. 2000. Т. 69. № 11. С. 995. https://doi.org/10.1070/RC2000v069n11ABEH000616
  10. Peyre V., Spalla O., Belloni L. et al. // J. Coll. Inter. Sci. 1997. V. 187. № 1. P. 184. https://doi.org/10.1006/jcis.1996.4692
  11. Singh N.B., Devi T.C., Singh T.D. // Russ. J. Inorg. Chem. 2023. V. 68. № 11. P. 1690. https://doi.org/10.1134/S0036023623601782
  12. Кожевникова Н.С., Ворох А.С., Ремпель А.А. // Журн. общей химии. 2010. Т. 80. № 2. С. 365. https://doi.org/10.1134/S1070363210030035
  13. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. P. 301. https://doi.org/10.1107/S0021889895014920
  14. Ordejon P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. P. R10441. http://dx.doi.org/10.1103/PhysRevB.53.R10441
  15. García A., Papior N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. P. 204108. https://doi.org/10.1063/5.0005077
  16. Zelaya-Angel O., de L. Castillo-Alvarado F., Avendailo-Lopez J. et al. // Solid State Commun. 1997. V. 104. № 3. P. 161. https://doi.org/10.1016/S0038-1098(97)00080-X
  17. Rossetti R., Nakahara S., Brus L.E. // J. Chem. Phys. 1983. V. 79. № 2. P. 1086. https://doi.org/10.1063/1.445834
  18. Nozik A.J., Williams F., Nenadovic M.T. et al. // J. Phys. Chem. 1985. V. 89. № 3. P. 397. https://doi.org/10.1021/j100249a004
  19. Weller H., Koch U., Gutierrez M. et al. // Phys. Chem. 1984. V. 88. P. 649. https://doi.org/10.1002/bbpc.19840880715
  20. Fojtik A., Weller H., Koch U. et al. // Phys. Chem. 1984. V. 88. № 10. P. 969. https://doi.org/10.1002/bbpc.19840881010
  21. Li W., Walther C.F.J., Kuc A. et al. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 2950. https://doi.org/10.1021/ct400235w
  22. Клюев В.Г., Фам Тхи Хан Мьен, Бездетко Ю.С. // Конденсированные среды и межфазные границы. 2014. T. 16. № 1. C. 27. https://journals.vsu.ru/kcmf/article/view/800
  23. Davydyuk H.Ye., Kevshyn A.H., Bozhko V.V. et al. // Semiconductors. 2009. V. 43. № 11. P. 1401. https://doi.org/10.1134/S1063782609110013
  24. Kulp B.A. // Phys. Rev. 1962. V. 125. P. 1865. https://doi.org/10.1103/PhysRev.125.1865
  25. Ramsden J.J., Grätzel M. // J. Chem. Soc. Faraday Trans. 1984. V. 80. № 1. P. 919. https://doi.org/10.1039/F19848000919
  26. Morozova N.K., Danilevich N.D., Kanakhin A.A. // Phys. Status Solidi C. 2010. V. 7. № 6. P. 1501. https://doi.org/10.1002/pssc.200983229
  27. Morozova N.K. New in the optics of II-VI-O compounds (New possibilities of optical diagnostics of single-crystal systems with defects). Riga: LAP LAMBERT Academic Publishing, 2021. 214 p.
  28. Морозова Н.К., Данилевич Н.Д. // Физика и техника полупроводников. 2010. Т. 44. № 4. С. 458. https://doi.org/10.1134/S1063782610040056
  29. Пугачевский М.А., Мамонтов В.А., Николаева С.Н. и др. // Изв. Юго-Западного гос. ун-та. Сер. Техника и технологии. 2021. Т. 11. № 2. С. 104.
  30. Дятлова Н.М., Темкина В.Я., Колпакова И.Д. Комплексоны. М.: Химия, 1970. 416 c.
  31. Nowack B. // Environ. Sci. Technol. 2002. V. 36. № 19. P. 4009. https://doi.org/10.1021/es025683s

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».