Bismuth(III) salts with malonic acid: synthesis, structure and properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of precipitation of bismuth(III) from perchloric acid solutions when malonic acid is added to them has been studied depending on the molar ratio of malonate ions to bismuth in the system. The basic bismuth malonate of the composition BiOH(C3H2O4) (compound I) and two identical in composition but different in structure bismuth malonates containing a water molecule were synthesized: Bi(C3H2O4)(C3H3O4)H2O (II) and [Bi(C3H2O4)(C3H3O4)] ∙ H2O (III). The basic bismuth malonate was obtained in X-ray amorphous form, and crystal structures were determined for the other two compounds by X-ray diffraction analysis. In compound II, a water molecule coordinates the bismuth and is a ligand, while in compound III it does not. Both compounds are one-dimensional (1D) coordination polymers. After calcination of compounds II and III at 120°C, anhydrous bismuth malonate of the composition Bi(C3H2O4)(C3H3O4) (IV) is formed by dehydration. All new compounds I–IV were characterized by IR spectroscopy, thermal analysis, powder diffractometry, and their compositions were confirmed by elemental analysis. The structure features of polymers II and III have been discussed, the topological analysis of the electron density of Bi–O contacts has been carried out, and the main and secondary bonds in coordination polyhedra have been identified.

About the authors

E. V. Timakova

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Science; Novosibirsk State Technical University

Email: timakova@solid.nsc.ru
ul. Kutatelagze, 18, Novosibirsk, 630090 Russia; pr. K. Marksa, 20, Novosibirsk, 630073 Russia

T. V. Rybalova

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Science

Email: timakova@solid.nsc.ru
pr. Akademika Lavrentieva, 9, Novosibirsk, 630090 Russia

I. V. Mirzaeva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Science

Email: timakova@solid.nsc.ru
pr. Akademika Lavrentieva, 3, Novosibirsk, 630090 Russia

T. N. Drebushchak

Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Science

Author for correspondence.
Email: timakova@solid.nsc.ru
ul. Kutatelagze, 18, Novosibirsk, 630090 Russia

References

  1. Keogan D., Griffith D. // Molecules. 2014. V. 19. P. 15258. https://doi.org/10.3390/molecules190915258
  2. Wang R., Li H., Ip T.K.-Y. et al. // Adv. Inorg. Chem. 2020. V. 75. P. 183. https://doi.org/10.1016/bs.adioch.2019.10.011
  3. Briand G.G., Burford N. // Chem. Rev. 1999. V. 99. P. 2601. https://doi.org/1021/cr980425s
  4. Zhou J.J., Shi X., Zheng S.P. et al. // Helicobacter. 2020. V. 25. P. 12755. https://doi.org/10.1111/hel.12755
  5. Тимакова Е.В., Бунькова Е.И., Афонина Л.И. и др. // Журн. прикл. химии. 2021. Т. 94. № 7. С. 857. https://doi.org/10.31857/S0044461821070069
  6. Усольцев А.Н., Шенцева И.А., Шаяпов В.Р. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1765. https://doi.org/10.31857/S0044457X2260102X
  7. Barszcz B., Masternak J., Kowalik M. // Coord. Chem. Rev. 2021. V. 443. 213935. https://doi.org/10.1016/j.ccr.2021.213935
  8. Ng S.W. // Acta Crystallogr., Sect. C: Struct. Chem. 2021. V. 77. P. 740. https://doi.org/10.1107/s2053229621011888
  9. Сережкин В.Н., Артемьева М.Ю., Сережкина Л.Б. и др. // Журн. неорган. химии. 2005. Т. 50. № 7. С. 1106. Serezhkin V.N., Artem'eva M.Yu., Serezhkina L.B. et al. // Russ. J. Inorg. Chem. 2005. V. 50. № 7. P. 1019.
  10. Сережкин В.Н., Медведков Я.А., Сережкина Л.Б. и др. // Журн. физ. химии. 2015. Т. 89. № 6. С. 978. https://doi.org/10.7868/S0044453715060254
  11. Сережкин В.Н., Рогалева Е.Ф., Шилова М.Ю. и др. // Журн. физ. химии. 2018. Т. 92. № 8. С. 1289. https://doi.org/10.7868/S0044453718080149
  12. Timakova E.V., Afonina L.I., Drebushchak T.N. et al. // Acta Crystallogr., Sect. C: Struct. Chem. 2023. V. 79. P. 409. https://doi.org/10.1107/s2053229623008124
  13. Kolitsch U. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2003. V. 59. P. m501. https://doi.org/10.1107/s0108270103023618
  14. Tortet L., Monnereau O., Roussel P. et al. // J. Phys. IV (Proc.). 2004. V. 118. P. 43. https://doi.org/10.1051/jp4:2004118005
  15. Rivenet M., Roussel P., Abraham F. // J. Solid State Chem. 2008. V. 181. P. 2586. https://doi.org/10.1016/j.jssc.2008.06.031
  16. Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
  17. Shetu S.A., Sanchez-Palestino L.M., Rivera G. et al. // Tetrahedron. 2022. V. 129. P. 133117. https://doi.org/10.1016/j.tet.2022.133117
  18. Kim Y.-S. // BMB Rep. 2002. V. 35. P. 443. https://doi.org/10.5483/BMBRep.2002.35.5.443
  19. Власов Б.Я., Карелина Л.Н. // Бюл. ВСНЦ СО РАМН. 2011. № 1. С. 216.
  20. Небольсин В.Е. Пат. РФ № 2685277 C1 // Бюл. изобр. 2019. № 11.
  21. Sundvall B. // Acta Chem. Scand. 1980. V. 34A. P. 93. https://doi.org/10.3891/acta.chem.scand.34a-0093
  22. Sheldrick G.M. // SADABS Progr. scaling Correct. Area Detect. data 1996. https://www.scienceopen.com/document?vid=5cab3651-c60c-4e6d-89cc-c55396e9e2dc
  23. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  24. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  26. Macrae C.F., Sovago I., Cottrell S.J. et al. // J. Appl. Crystallogr. 2020. V. 53. P. 226. https://doi.org/10.1107/S1600576719014092
  27. Weil M., Missen O.P., Mills S.J. // Acta Crystallogr., Sect. E: Crystallogr. Comm. 2023. V. 79. № 12. P. 1223. https://doi.org/10.1107/S205698902301023X
  28. BAND: SCM, Vrije Universiteit, Theoretical Chemistry: Amsterdam, The Netherlands, http://www.scm.com.
  29. Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. V. 24. P. 1142. https://doi.org/10.1002/jcc.10255
  30. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  31. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
  32. Van Lenthe E., Van Leeuwen R., Baerends E.J. et al. // Int. J. Quantum Chem. 1996. V. 57. P. 281. https://doi.org/10.1002/(SICI)1097-461X(1996)57:3<281::AID-QUA2>3.0.CO;2-U
  33. Bader R.F.W. // Chem. Rev. 1991. V. 91. № 5. P. 893. https://doi.org/10.1021/cr00005a013
  34. Savin A., Jepsen O., Flad J. et al. // Angew. Chem. Int. Ed. 1992. V. 31. № 2. P. 187. https://doi.org/10.1002/anie.199201871
  35. Kowalik M., Masternak J., Brzeski J. et al. // Polyhedron. 2022. V. 219. 115818. https://doi.org/10.1016/j.poly.2022.115818
  36. Hartshorn R.M., Hey-Hawkins E., Kalio R. et al. // Pure Appl. Chem. 2007. V. 79. № 10. P. 1779. https://doi.org/10.1351/pac200779101779
  37. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. Is. 3-4. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0
  38. Macoas E.M.S., Fausto R., Lundell J. et al. // J. Phys. Chem. A. 2000. V. 104. P. 11725. https://doi.org/10.1021/jp002853j
  39. Tarakeshwar P., Manogaran S. // J. Mol. Struct.: THEOCHEM. 1996. V. 362. P. 77. https://doi.org/10.1016/0166-1280(95)04375-6
  40. Caires F.J., Lima L.S., Carvalho C.T. et al. // Thermochim. Acta. 2010. V. 497. P. 35. https://doi.org/10.1016/j.tca.2009.08.013
  41. Ristova M., Petrusevski G., Raskovska A. et al. // J. Mol. Struct. 2009. V. 924–926. P. 93. https://doi.org/10.1016/j.molstruc.2008.12.010
  42. Mathew V., Jacob S., Xavier L. et al. // J. Rare Earths. 2012. V. 30. P. 245. https://doi.org/10.1016/s1002-0721(12)60039-8
  43. Brusau E.V., Narda G.E., Pedregosa J.C. et al. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2002. V. 58. P. 1769. https://doi.org/10.1016/s1386-1425(01)00630-8
  44. Deacon G. // Coord. Chem. Rev. 1980. V. 33. P. 227. https://doi.org/10.1016/s0010-8545(00)80455-5
  45. Xiao J., Zhang H., Xia Y. et al. // RSC Adv. 2016. V. 6. P. 39861. https://doi.org/10.1039/c6ra03055f
  46. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. New Jersey: John Wiley Sons, 2009. https://doi.org/10.1002/9780470405888

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Additional materials
Download (204KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).