HYDROTHERMAL SYNTHESIS OF HIERARCHICALLY ORGANIZED MoS2 AND THE FORMATION OF FILMS BASED ON IT
- 作者: Simonenko T.L1, Simonenko N.P1, Zemlyanukhin A.A2, Gorobtsov P.Y.1, Simonenko E.P1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- D.I. Mendeleyev University of Chemical Technology of Russia
- 期: 卷 69, 编号 12 (2024)
- 页面: 1690-1704
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://ogarev-online.ru/0044-457X/article/view/289003
- DOI: https://doi.org/10.31857/S0044457X24120035
- EDN: https://elibrary.ru/IXKTME
- ID: 289003
如何引用文章
详细
作者简介
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: egorova.offver@mail.ru
Moscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: tol@ccas.ru
Moscow, Russia
A. Zemlyanukhin
D.I. Mendeleyev University of Chemical Technology of RussiaMoscow, Russia
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
参考
- Muhammad Saqib Q., Mannan A., Noman M. et al. // Chem. Eng. J. 2024. V. 490. P. 151857. https://doi.org/10.1016/j.cej.2024.151857
- Bu F., Zhou W., Xu Y. et al. // npj Flex. Electron. 2020. V. 4. № 1. P. 31. https://doi.org/10.1038/s41528-020-00093-6
- Simonenko T.L., Simonenko N.P., Gorobtsov P.Y. et al. // Materials (Basel). 2023. V. 16. № 18. P. 6133. https://doi.org/10.3390/ma16186133
- Sun X., Chen K., Liang F. et al. // Front. Chem. 2022. V. 9. https://doi.org/10.3389/fchem.2021.807500
- Xie Y., Zhang H., Hu H. et al. // Chem. A Eur. J. 2024. V. 30. № 21. https://doi.org/10.1002/chem.202304160
- Khan Y., Ostfeld A.E., Lochner C.M. et al. // Adv. Mater. 2016. V. 28. № 22. P. 4373. https://doi.org/10.1002/adma.201504366
- Lu Y., Lou Z., Jiang K. et al. // Mater. Today Nano. 2019. V. 8. P. 100050. https://doi.org/10.1016/j.mtnano.2019.100050
- Jia R., Shen G., Qu F. et al. // Energy Storage Mater. 2020. V. 27. P. 169. https://doi.org/10.1016/j.ensm.2020.01.030
- Hepel M. // Electrochem. Sci. Adv. 2023. V. 3. № 3. https://doi.org/10.1002/elsa.202100222
- Han X., Wu X., Zhao L. et al. // Microsystems Nanoeng. 2024. V. 10. № 1. P. 107. https://doi.org/10.1038/s41378-024-00742-0
- Reenu, Sonia, Phor L. et al. // J. Energy Storage. 2024. V. 84. P. 110698. https://doi.org/10.1016/j.est.2024.110698
- Czagany M., Hompoth S., Keshri A.K. et al. // Materials (Basel). 2024. V. 17. № 3. P. 702. https://doi.org/10.3390/ma17030702
- Das H.T., Dutta S., T. E.B. et al. // Handb. Biodegrad. Mater. Springer International Publishing. Cham, 2023. P. 1569. https://doi.org/10.1007/978-3-031-09710-2_41
- Forouzandeh P., Kumaravel V., Pillai S.C. // Catalysts. 2020. V. 10. № 9. P. 969. https://doi.org/10.3390/catal10090969
- Choi W., Choudhary N., Han G.H. et al. // Mater. Today. 2017. V. 20. № 3. P. 116. https://doi.org/10.1016/j.mattod.2016.10.002
- Tao H., Fan Q., Ma T. et al. // Prog. Mater. Sci. 2020. V. 111. P. 100637. https://doi.org/10.1016/j.pmatsci.2020.100637
- Kumar P., Abuhimd H., Wahyudi W. et al. // ECS J. Solid State Sci. Technol. 2016. V. 5. № 11. P. Q3021. https://doi.org/10.1149/2.0051611jss
- Joseph N., Shafi P.M., Bose A.C. // Energy & Fuels. 2020. V. 34. № 6. P. 6558. https://doi.org/10.1021/acs.energyfuels.0c00430
- Mohan M., Shetti N.P., Aminabhavi T.M. // Mater. Today Chem. 2023. V. 27. P. 101333. https://doi.org/10.1016/j.mtchem.2022.101333
- Al-Ghiffari A.D., Ludin N.A., Davies M.L. et al. // Mater. Today Commun. 2022. V. 32. P. 104078. https://doi.org/10.1016/j.mtcomm.2022.104078
- Hu T., Zhang R., Li J.-P. et al. // Chip. 2022. V. 1. № 3. P. 100017. https://doi.org/10.1016/j.chip.2022.100017
- Ji S., Bae S., Hu L. et al. // Adv. Mater. 2024. V. 36. № 2. https://doi.org/10.1002/adma.202309531
- Yin Z., Li H., Li H. et al. // ACS Nano. 2012. V. 6. № 1. P. 74. https://doi.org/10.1021/nn2024557
- Li H., Wu J., Yin Z. et al. // Acc. Chem. Res. 2014. V. 47. № 4. P. 1067. https://doi.org/10.1021/ar4002312
- Cantarella M., Gorrasi G., Di Mauro A. et al. // Sci. Rep. 2019. V. 9. № 1. P. 974. https://doi.org/10.1038/s41598-018-37798-8
- Simonenko T.L., Simonenko N.P., Zemlyanukhin A.A. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1875. https://doi.org/10.1134/S003602362360212X
- Li J., Listwan A., Liang J. et al. // Chem. Eng. J. 2021. V. 422. P. 130100. https://doi.org/10.1016/j.cej.2021.130100
- Wang T., Guo J., Zhang Y. et al. // Cryst. Growth Des. 2024. V. 24. № 7. P. 2755. https://doi.org/10.1021/acs.cgd.3c01369
- Cadot S., Renault O., Fregnaux M. et al. // Nanoscale. 2017. V. 9. № 2. P. 538. https://doi.org/10.1039/C6NR06021H
- Park C., Shim G.W., Hong W. et al. // ACS Appl. Nano Mater. 2023. V. 6. № 10. P. 8981. https://doi.org/10.1021/acsanm.3c01622
- Simonenko T.L., Bocharova V.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 459. https://doi.org/10.1134/S003602362004018X
- Simonenko T.L., Bocharova V.A., Gorobtsov P.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1292. https://doi.org/10.1134/S0036023620090193
- Simonenko T.L., Dudorova D.A., Simonenko N.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1865. https://doi.org/10.1134/S0036023623602131
- Han J.T., Jang J.I., Kim H. et al. // Sci. Rep. 2014. V. 4. № 1. P. 5133. https://doi.org/10.1038/srep05133
- Lukianov M.Y., Rubekina A.A., Bondareva J.V. et al. // Nanomaterials. 2023. V. 13. № 13. P. 1982. https://doi.org/10.3390/nano13131982
- Qiu H., Zheng H., Jin Y. et al. // Ionics (Kiel). 2020. V. 26. № 11. P. 5543. https://doi.org/10.1007/s11581-020-03734-y
- Yan H., Song P., Zhang S. et al. // RSC Adv. 2015. V. 5. № 89. P. 72728. https://doi.org/10.1039/C5RA13036K
- Wang X., Li H., Li H. et al. // Adv. Funct. Mater. 2020. V. 30. № 15. https://doi.org/10.1002/adfm.201910302Reddy
- Inta H., Biswas T., Ghosh S. et al. // ChemNanoMat. 2020. V. 6. № 4. P. 685. https://doi.org/10.1002/cnma.202000005
- Zhao W., Liu X., Yang X. et al. // Nanomaterials. 2020. V. 10. № 6. P. 1124. https://doi.org/10.3390/nano10061124Feng
- J., Fan Y., Zhao H. et al. // Brazilian J. Phys. 2021. V. 51. № 3. P. 493. https://doi.org/10.1007/s13538-021-00863-1Kaur
- J., Gravagnuolo A.M., Maddalena P. et al. // RSC Adv. 2017. V. 7. № 36. P. 22400. https://doi.org/10.1039/C7RA01680HPierucci
- D., Henck H., Naylor C.H. et al. // Sci. Rep. 2016. V. 6. № 1. P. 26656. https://doi.org/10.1038/srep26656
- Yu H., Xu J., Liu Z. et al. // J. Mater. Sci. 2018. V. 53. № 21. P. 15271. https://doi.org/10.1007/s10853-018-2687-4
- Shakya J., Kumar S., Kanjilal D. et al. // Sci. Rep. 2017. V. 7. № 1. P. 9576. https://doi.org/10.1038/s41598-017-09916-5
- Zhou P., Song X., Yan X. et al. // Nanotechnology. 2016. V. 27. № 34. P. 344002. https://doi.org/10.1088/0957-4484/27/34/344002
补充文件
