Кристаллизация в условиях "мягкой" химии новых наноматериалов на основе неорганических фторидов и перспективы их применения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрены особенности образования и роста кристаллов фторидов металлов MF2 (М = Ca, Sr, Pb) и MF3 (М = Sc, La, Ln) в результате взаимодействия между компонентами водного раствора соли металла и газообразным фтороводородом на планарной границе раздела фаз при комнатной температуре. В качестве модельных объектов выбраны соединения с различным кристаллическим строением: PbF2 (пр. гр. Pnma, Fm3m), ScF3 (пр. гр. Pm3m, P6/mmm), LaF3 (пр. гр. P3c1). Определены факторы, оказывающие значительное влияние на морфологию, размеры и упорядочение образующихся кристаллов. Показана возможность синтеза 1D- и 2D-кристаллов ряда соединений. Проанализированы вероятные области использования наноматериалов на основе синтезированных соединений. Сделан вывод о перспективах применения развиваемого метода синтеза для создания новых твердых электролитов, оптически активных материалов, функциональных покрытий.

Полный текст

Доступ закрыт

Об авторах

Л. Б. Гулина

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: l.gulina@spbu.ru
Россия, Санкт-Петербург

В. П. Толстой

Санкт-Петербургский государственный университет

Email: l.gulina@spbu.ru
Россия, Санкт-Петербург

И. В. Мурин

Санкт-Петербургский государственный университет

Email: l.gulina@spbu.ru
Россия, Санкт-Петербург

Список литературы

  1. Gránásy L., Pusztai T., Börzsönyi T. et al. // Nat. Mater. 2004. V. 3. № 9. P. 645. https://doi.org/10.1038/nmat1190
  2. Linnikov O.D. // Russ. Chem. Rev. 2014. V. 83. № 4. P. 343. https://doi.org/10.1070/RC2014v083n04ABEH004399
  3. Ivanov V.K., Fedorov P.P., Baranchikov A. et al. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1204. https://doi.org/10.1070/RCR4453
  4. Lv W., Huo W., Niu Y. et al. // CrystEngComm. 2015. V. 17. № 4. P. 729. https://doi.org/10.1039/c4ce01640h
  5. Zhou W. // Crystals. 2019. V. 9. № 1. P. 7. https://doi.org/10.3390/cryst9010007
  6. Kim H.J., Kim J.H., Jeong J.S. et al. // Nano Letters. 2022. V. 22. № 8. P. 3252. https://doi.org/10.1021/acs.nanolett.1c04966
  7. Han T., Choi Y., Kwon J.T. et al. // Langmuir. 2020. V. 36. № 33. P. 9843. https://doi.org/10.1021/acs.langmuir.0c01468
  8. Khodaparast S., Marcos J., Sharratt W.N. et al. // Langmuir. 2021. V. 37. № 1. P. 230. https://doi.org/10.1021/acs.langmuir.0c02821
  9. Pikin S.A. // Phys. A. Stat. Mech. Appl. 1992. V. 191. № 1–4. P. 139. https://doi.org/10.1016/0378-4371(92)90518-U
  10. Buchinskaya I., Fedorov P. // Russ. Chem. Rev. 2004. V. 73. P. 404. https://doi.org/10.1070/RC2004v073n04ABEH000811
  11. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела: в 2 т., т. 2. СПб.: Изд-во С.-Петерб. ун-та, 2010. 1000 с.
  12. Trnovcová V., Fedorov P.P., Furár I. // J. Rare Earths. 2008. V. 26. № 2. P. 225. https://doi.org/10.1016/S1002-0721(08)60070-8
  13. Trnovcová V., Fedorov P.P., Furár I. // Russ. J. Electrochem. 2009. V. 45. № 6. P. 630. https://doi.org/10.1134/S1023193509060020
  14. Trnovcová V., Fedorov P.P., Buchinskaya I.I. et al. // Solid State Ionics. 1999. V. 119. № 1–4. P. 181. https://doi.org/10.1016/S0167-2738(98)00501-3
  15. Sorokin N.I., Fedorov P.P., Sobolev B.P. // Inorg. Mater. 1997. V. 33. № 1. P. 1.
  16. Hu L., Chen J., Fan L. et al. // J. Am. Ceram. Soc. 2014. V. 97. № 4. P. 1009. https://doi.org/10.1111/jace.12855
  17. Александров А.А., Брагина А.Г., Сорокин Н.И. и др. // Неорган. материалы. 2023. Т. 59. № 3. С. 306. https://doi.org/10.31857/S0002337X23030016
  18. Fedorov P.P., Alexandrov A.A. // J. Fluorine Chem. 2019. V. 227. P. 109374. https://doi.org/10.1016/j.jfluchem.2019.109374
  19. Glazunova T., Boltalin A., Fedorov P. // Russ. J. Inorg. Chem. 2006. V. 51. P. 983. https://doi.org/10.1134/S0036023606070011
  20. Liu G., Zhou Z., Fei F. et al. // Phys. B (Amsterdam, Neth.). 2015. V. 457. P. 132. https://doi.org/10.1016/j.physb.2014.10.004
  21. Han L., Wang Y., Guo L. et al. // Nanoscale. 2014. V. 6. № 11. P. 5907. https://doi.org/10.1039/C4NR00512K
  22. Schmidt L., Emmerling F., Kirmse H. et al. // RSC Adv. 2014. V. 4. № 1. P. 32. https://doi.org/10.1039/C3RA43769H
  23. Fujihara S., Kadota Y., Kimura T. // J. Sol-Gel Sci. Technol. 2002. V. 24. № 2. P. 147. https://doi.org/10.1023/A:1015252010509
  24. Heise M., Scholz G., Kemnitz E. // Solid State Sci. 2017. V. 72. P. 41. https://doi.org/10.1016/j.solidstatesciences.2017.08.010
  25. Heise M., Scholz G., Duevel A. et al. // Solid State Sci. 2018. V. 77. P. 45. https://doi.org/10.1016/j.solidstatesciences.2018.01.007
  26. Ji Q., Melnikova N.A., Glumov O.V. et al. // Ceram. Int. 2023. V. 49. № 11. P. 16901. https://doi.org/10.1016/j.ceramint.2023.02.051
  27. Zheng Y., Zhang Y., Wu J. et al. // Displays. 2014. V. 35. № 5. P. 273. https://doi.org/10.1016/j.displa.2014.10.002
  28. Han Y., Zhang Q., Fang S. et al. // Adv. Mater. Res. 2011. V. 335–336. P. 172. https://doi.org/10.4028/www.scientific.net/AMR.335-336.172
  29. Kuznetsov S.V., Osiko V.V., Tkatchenko E.A. et al. // Russ. Chem. Rev. 2006. V. 75. № 12. P. 1065. https://doi.org/10.1070/RC2006v075n12ABEH003637
  30. Abiev R.S., Zdravkov A.V., Kudryashova Y.S. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 7. P. 1047. https://doi.org/10.1134/S0036023621070020
  31. Fedorov P.P., Luginina A.A., Tabachkova N.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1211. https://doi.org/10.1134/S0036023622080101
  32. Fedorov P.P., Kuznetsov S.V., Mayakova M.N. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1525. https://doi.org/10.1134/S003602361110007X
  33. Mayakova M.N., Kuznetsov S.V., Voronov V.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 7. P. 773. https://doi.org/10.1134/S003602361407016X
  34. Patle A., Patil R.R., Moharil S.V. // AIP Conf. Proc. 2016. V. 1728. № 1. P. 020353. https://doi.org/10.1063/1.4946404
  35. Zhou Z., Li W., Song J. et al. // Ceram. Int. 2018. V. 44. № 4. P. 4344. https://doi.org/10.1016/j.ceramint.2017.12.028
  36. Kuznetsov S.V., Kozlova A.N., Voronov V.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 293. https://doi.org/10.1134/S0036023618030130
  37. Fedorov P.P., Mayakova M.N., Kuznetsov S.V. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 9. P. 1173. https://doi.org/10.1134/S0036023617090078
  38. Luginina A.A., Fedorov P.P., Kuznetsov S.V. et al. // Inorg. Mater. 2012. V. 48. № 5. P. 531. https://doi.org/10.1134/S002016851205010X
  39. Yasyrkina D.S., Kuznetsov S.V., Alexandrov A.A. et al. // Nanosyst. Phys. Chem. Math. 2021. V. 12. № 4. P. 505. https://doi.org/10.17586/2220-8054-2021-12-4-505-511
  40. Kuznetsov S.V., Nizamutdinov A.S., Proydakova V.Y. et al. // Inorg. Mater. 2019. V. 55. № 10. P. 1031. https://doi.org/10.1134/S002016851910008X
  41. Fedorov P.P., Luginina A.A., Ermakova J.A. et al. // J. Fluorine Chem. 2017. V. 194. P. 8. https://doi.org/10.1016/j.jfluchem.2016.12.003
  42. Бучинская И.И., Сорокин Н.И. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 877. https://doi.org/10.31857/S0044457X23600044
  43. Kuznetsov S.V., Ovsyannikova A.A., Tupitsyna E.A. et al. // J. Fluorine Chem. 2014. V. 161. P. 95. https://doi.org/10.1016/j.jfluchem.2014.02.011
  44. Gulina L.B., Weigler M., Privalov A.F. et al. // Solid State Ionics. 2020. V. 352. P. 115354. https://doi.org/10.1016/j.ssi.2020.115354
  45. Fedorov P.P., Osiko V.V., Kuznetsov S.V. et al. // J. Cryst. Growth. 2014. V. 401. P. 63. https://doi.org/10.1016/j.jcrysgro.2013.12.069
  46. Tolstoi V.P., Gulina L.B. // Russ. J. Gen. Chem. 2013. V. 83. № 9. P. 1635. https://doi.org/10.1134/S1070363213090016
  47. Tolstoy V.P., Gulina L.B. // J. Nano- Electron. Phys. 2013. V. 5. № 1. P. 01003.
  48. Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
  49. Гулина Л.Б. Синтез твердофазных соединений и наноматериалов с участием химических реакций на границе раздела раствор–газ. Автореф. дис. ... д.х.н.: 1.4.15. СПб, 2022. 38 c.
  50. Forsyth J.B., Wilson C.C., Sabine T.M. // Acta Crystallogr., Sect. A. 1989. V. 45. № 3. P. 244. https://doi.org/10.1107/S0108767388011353
  51. Achary S.N., Tyagi A.K. // Powder Diffr. 2005. V. 20. № 3. P. 254. https://doi.org/10.1154/1.1948391
  52. Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // CrystEngComm. 2017. V. 19. № 36. P. 5412. https://doi.org/10.1039/C7CE01396E
  53. Fedorov P.P., Trnovcova V., Kocherba G.I. et al. // Kristallografiya. 1995. V. 40. № 4. P. 716.
  54. Kasatkin I.A., Gulina L.B., Platonova N.V. et al. // CrystEngComm. 2018. V. 20. № 20. P. 2768. https://doi.org/10.1039/C8CE00257F
  55. Gulina L.B., Tolstoy V.P., Petrov Y.V. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 9779. https://doi.org/10.1021/acs.inorgchem.8b01375
  56. Yu L., Zhang G., Li S. et al. // J. Cryst. Growth. 2007. V. 299. № 1. P. 184. https://doi.org/10.1016/j.jcrysgro.2006.10.237
  57. Gulina L.B., Tolstoy V.P. // Russ. J. Gen. Chem. 2014. V. 84. № 8. P. 1472. https://doi.org/10.1134/S1070363214080039
  58. Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // J. Fluorine Chem. 2015. V. 180. P. 117. https://doi.org/10.1016/j.jfluchem.2015.09.002
  59. Gulina L.B., Schikora M., Privalov A.F. et al. // Appl. Magn. Reson. 2019. V. 50. № 4. P. 579. https://doi.org/10.1007/s00723-018-1077-z
  60. Gulina L.B., Tolstoy V.P., Kasatkin I.A. et al. // J. Fluorine Chem. 2017. V. 200. P. 18. https://doi.org/10.1016/j.jfluchem.2017.05.006
  61. Cheetham A.K., Fender B.E.F., Fuess H. et al. // Acta Crystallogr., Sect. B. 1976. V. 32. № 1. P. 94. https://doi.org/10.1107/S0567740876002380
  62. Fan F.-R., Ding Y., Liu D.-Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 34. P. 12036. https://doi.org/10.1021/ja9036324
  63. Yoo S., Sen R., Simon Z.C. et al. // Chem. Mater. 2023. V. 35. № 16. P. 6274. https://doi.org/10.1021/acs.chemmater.3c00798
  64. Wen X., Nazemi S.A., da Silva R.R. et al. // Langmuir. 2023. V. 39. № 32. P. 11268. https://doi.org/10.1021/acs.langmuir.3c00799
  65. Yuan H., Wang Y., Yang C. et al. // ChemPhysChem. 2019. V. 20. № 22. P. 2964. https://doi.org/10.1002/cphc.201900524
  66. Amano O., Sasahira A., Kani Y. et al. // J. Nucl. Sci. Technol. 2004. V. 41. № 1. P. 55. https://doi.org/10.1080/18811248.2004.9715457
  67. Smirnov P.R., Grechin O.V., Vashurin A.S. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 382. https://doi.org/10.1134/S0036023622030111
  68. Zhang H., Banfield J.F. // CrystEngComm. 2014. V. 16. № 8. P. 1568. https://doi.org/10.1039/c3ce41929k
  69. Zhang J., Huang F., Lin Z. // Nanoscale. 2010. V. 2. № 1. P. 18. https://doi.org/10.1039/b9nr00047j
  70. Popov P.A., Sidorov А.А., Kul’chenkov Е.А. et al. // Ionics. 2016. V. 23. № 1. P. 233. https://doi.org/10.1007/s11581-016-1802-2
  71. Takami T., Pattanathummasid C., Kutana A. et al. // J. Phys.: Condens. Matter. 2023. V. 35. P. 29. https://doi.org/10.1088/1361-648X/accb32
  72. Kühn H.J., Duparré A., Richter W. et al. // Thin Solid Films. 1991. V. 201. № 2. P. 281. https://doi.org/10.1016/0040-6090(91)90117-G
  73. Zhu G., Liu P., Hojamberdiev M. et al. // J. Mater. Sci. 2010. V. 45. № 7. P. 1846. https://doi.org/10.1007/s10853-009-4168-2
  74. Wang G., Peng Q., Li Y. // J. Am. Chem. Soc. 2009. V. 131. № 40. P. 14200. https://doi.org/10.1021/ja906732y
  75. Lyapin A.A., Ryabochkina P.A., Chabushkin A.N. et al. // J. Lumin. 2015. V. 167. P. 120. https://doi.org/10.1016/j.jlumin.2015.06.011
  76. Волчек А.А., Кузнецов С.В. // Журн. неорган. химии. 2023. Т. 68. № 8. С. 1005. https://doi.org/10.31857/S0044457X22602371
  77. Li Z., Zhang Y., Huang L. et al. // Theranostics. 2016. V. 6. № 13. P. 2380. https://doi.org/10.7150/thno.15914
  78. Sorokin N.I., Karimov D.N., Grebenev V.V. et al. // Crystallogr. Rep. 2016. V. 61. № 2. P. 270. https://doi.org/10.1134/S1063774516020267
  79. Kobayashi S., Kokubo M. // Synlett. 2008. V. 2008. № 10. P. 1562. https://doi.org/10.1055/s-2008-1078409
  80. Cao J., Yuan L., Hu S. et al. // CrystEngComm. 2016. V. 18. № 31. P. 5940. https://doi.org/10.1039/c6ce01198e
  81. Ai Y., Tu D., Zheng W. et al. // Nanoscale. 2013. V. 5. № 14. P. 6430. https://doi.org/10.1039/C3NR01529G
  82. Piskunov S., Žguns P.A., Bocharov D. et al. // Phys. Rev. B: Condens. Matter. 2016. V. 93. № 21. P. 214101. https://doi.org/10.1103/PhysRevB.93.214101
  83. Hu L., Chen J., Sanson A. et al. // J. Am. Chem. Soc. 2016. V. 138. № 27. P. 8320. https://doi.org/10.1021/jacs.6b02370
  84. Yang C., Tong P., Lin J.C. et al. // Appl. Phys. Lett. 2016. V. 109. № 2. P. 023110. https://doi.org/10.1063/1.4959083
  85. Greve B.K., Martin K.L., Lee P.L. et al. // J. Am. Chem. Soc. 2010. V. 132. № 44. P. 15496. https://doi.org/10.1021/ja106711v
  86. Gulina L.B., Schäfer M., Privalov A.F. et al. // J. Chem. Phys. 2015. V. 143. № 23. P. 234702. https://doi.org/10.1063/1.4937415
  87. Denecke M.A., Gunßer W., Privalov A.V. et al. // Solid State Ionics. 1992. V. 52. № 4. P. 327. https://doi.org/10.1016/0167-2738(92)90179-S
  88. Wang F., Grey C.P. // Chem. Mater. 1997. V. 9. № 5. P. 1068. https://doi.org/10.1021/cm970044f
  89. Sorokin N.I., Smirnov A.N., Fedorov P.P. et al. // Russ. J. Electrochem. 2009. V. 45. № 5. P. 606. https://doi.org/10.1134/S1023193509050206
  90. Gulina L.B., Schäfer M., Privalov A.F. et al. // J. Fluorine Chem. 2016. V. 188. P. 185. https://doi.org/10.1016/j.jfluchem.2016.07.006
  91. Gulina L.B., Privalov A.F., Weigler M. et al. // Appl. Magn. Reson. 2020. V. 51. № 12. P. 1691. https://doi.org/10.1007/s00723-020-01247-5
  92. Sinitsyn V.V., Lips O., Privalov A.F. et al. // J. Phys. Chem. Solids. 2003. V. 64. № 7. P. 1201. https://doi.org/10.1016/S0022-3697(03)00050-7

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. СЭМ-изображения кристаллов, синтезированных на поверхности 0.02 М водных растворов Ca(CH3COO)2 (а) и Sr(CH3COO)2 (б) в результате их обработки газообразным HF. а, б строчные; µm заменить на мкм

Скачать (183KB)
3. Рис. 2. Рентгенограммы кристаллов SrF2 (а) и PbF2 (б), синтезированных в результате взаимодействия в течение 40 мин с газообразным HF на поверхности 0.02 М водных растворов Sr(CH3COO)2 и Pb(CH3COO)2 соответственно. Положения максимумов в нижней части рисунка характеризуют кристаллическую структуру флюорита состава SrF2 [50] (а) и β-PbF2 [51] (б).

Скачать (92KB)
4. Рис. 3. Оптические (а, г) и СЭМ-изображения (б, в, д) кристаллов PbF2, синтезированных на поверхности растворов Pb(CH3COO)2 (а–в) и Pb(CH3COO)2/KCH3COO (г, д) при действии газообразного HF; е — картина Кикучи двумерного кристалла PbF2 с указанием индексации атомных плоскостей.

Скачать (274KB)
5. Рис. 4. СЭМ-изображения при различном увеличении кристаллов, синтезированных на поверхности 0.1 М (а, б) и 0.05 М (в, г) водных растворов ScCl3; 0.02 М Sc(NO3)3 (д) в результате взаимодействия с газообразным HF; е — изображение трубки ScF3, полученное методом HeИМ. а–е строчные; µm заменить на мкм; нм

Скачать (213KB)
6. Рис. 5. Результаты исследования кристаллической структуры материалов на основе фторида скандия: а — рентгенограмма пленки (45% c-ScF3); б — рентгенограмма порошка из стержнеобразных кристаллов (96% h-ScF3); в — ПЭМ-изображения и электронограмма стенки трубки ScF3. а–в строчные в скобках; по оси х 2θ (CuKα), град

Скачать (103KB)
7. Рис. 6. СЭМ-изображения пленок, синтезированных на поверхности 0.035 М водного раствора LaCl3 (а) и азотнокислого раствора La(NO3)3 (б) в результате их обработки газообразным HF; в, г — ПЭМ ВР-изображения частиц, полученных на поверхности азотнокислого раствора La(NO3)3 под действием HF.

Скачать (254KB)
8. Рис. 7. Рентгенограммы пленок LaF3 на поверхности монокристаллического кремния, синтезированных в результате 40 мин взаимодействия с газообразным HF на поверхности 0.035 М водного раствора LaCl3 с равновесным рН (а) и 0.035 М раствора La(NO3)3 в присутствии 1 М НNO3 (б).

Скачать (100KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».