Моногидрат пропионата лантана и разнолигандный комплекс с диэтилентриамином: синтез, кристаллическая структура, применение в химическом осаждении тонких пленок никелата лантана

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Прием разнолигандного комплексообразования с хелатирующим тридентатным лигандом диэтилентриамином (DETA) использован для модифицирования строения слоистого координационного полимера на основе пропионата (Prop) лантана. Синтезирован моногидрат пропионата лантана, для которого совокупностью методов анализа установлены состав и кристаллическая структура, также определено строение комплексов пропионатов лантана и никеля с диэтилентриамином. Показано, что исходный [La2(H2O)2Prop6] обладает слоистым строением, в то время как разнолигандный комплекс [La2(DETA)Prop6] ⋅ MeCN (MeCN – ацетонитрил) представлен цепочечной структурой. Разработана методика химического осаждения из раствора, позволяющая получать фазово-чистые ориентированные пленки LaNiO3, демонстрирующие металлическую проводимость и допускающие применение в качестве проводящих подслоев.

Об авторах

М. П. Кендин

Московский государственный университет им. М.В. Ломоносова,
Химический факультет; Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах

Email: tsymbarenko@gmail.com
Россия, 119991, Москва, Ленинские горы, 1; Россия, 119991, Москва, Ленинские горы, 1

Р. А. Гашигуллин

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах

Email: tsymbarenko@gmail.com
Россия, 119991, Москва, Ленинские горы, 1

И. А. Мартынова

Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Email: tsymbarenko@gmail.com
Россия, 119991, Москва, Ленинские горы, 1

А. А. Аносов

Московский государственный университет им. М.В. Ломоносова,
Химический факультет; Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах

Email: tsymbarenko@gmail.com
Россия, 119991, Москва, Ленинские горы, 1; Россия, 119991, Москва, Ленинские горы, 1

Д. М. Цымбаренко

Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Автор, ответственный за переписку.
Email: tsymbarenko@gmail.com
Россия, 119991, Москва, Ленинские горы, 1

Список литературы

  1. Eliseeva S. V., Bünzli J.-C.G. // Chem. Soc. Rev. 2010. V. 39. № 1. P. 189. https://doi.org/10.1039/B905604C
  2. Sessoli R., Powell A.K. // Coord. Chem. Rev. 2009. V. 253. № 19–20. P. 2328. https://doi.org/10.1016/j.ccr.2008.12.014
  3. Woodruff D.N., Winpenny R.E.P., Layfield R.A. // Chem. Rev. 2013. V. 113. № 7. P. 5110. https://doi.org/10.1021/cr400018q
  4. Mishra S., Daniele S. // Chem. Rev. 2015. V. 115. № 16. P. 8379. https://doi.org/10.1021/cr400637c
  5. Schneller T., Waser R., Kosec M. et al. // Chemical Solution Deposition of Functional Oxide Thin Films. Vienna: Springer Vienna, 2013. 796 p. https://doi.org/10.1007/978-3-211-99311-8
  6. Vermeir P., Cardinael I., Bäcker M. et al. // Supercond. Sci. Technol. 2009. V. 22. № 7. P. 075009. https://doi.org/10.1088/0953-2048/22/7/075009
  7. Kendin M., Tsymbarenko D. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 367. https://doi.org/10.1016/j.jaap.2019.04.016
  8. Rasi S., Silveri F., Ricart S. et al. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 312. https://doi.org/10.1016/j.jaap.2019.04.008
  9. Sheehan C., Jung Y., Holesinger T. et al. // Appl. Phys. Lett. 2011. V. 98. № 7. P. 071907. https://doi.org/10.1063/1.3554754
  10. Schwartz R.W. // Chem. Mater. 1997. V. 9. № 11. P. 2325. https://doi.org/10.1021/cm970286f
  11. Tsymbarenko D.M., Martynova I.A., Malkerova I.P. et al. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 662. https://doi.org/10.1134/S1070328416100043
  12. Grivel J.-C. // J. Anal. Appl. Pyrolysis. 2010. V. 89. № 2. P. 250. https://doi.org/10.1016/j.jaap.2010.08.011
  13. Grivel J.C. // J. Therm. Anal. Calorim. 2012. V. 109. № 1. P. 81. https://doi.org/10.1007/s10973-011-1745-9
  14. Grivel J.C. // J. Therm. Anal. Calorim. 2014. V. 115. № 2. P. 1253. https://doi.org/10.1007/s10973-013-3467-7
  15. Grivel J.C. // J. Anal. Appl. Pyrolysis. 2013. V. 101. P. 185. https://doi.org/10.1016/j.jaap.2013.01.011
  16. Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. – Cryst. Mater. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  17. Sheldrick G.M. // SHELXTL Ver. 5.10, Structure Determination Software Suite. Madison, WI, USA: Bruker AXS, 1998.
  18. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Crystallogr. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  19. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  20. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
  21. Casanova D., Llunell M., Alemany P. et al. // Chem. - A Eur. J. 2005. V. 11. № 5. P. 1479. https://doi.org/10.1002/chem.200400799
  22. Scales N., Zhang Y., Bhadbhade M. et al. // Polyhedron. 2015. V. 102. P. 130. https://doi.org/10.1016/j.poly.2015.07.065
  23. Grivel J.C., Zhao Y., Tang X. et al. // J. Anal. Appl. Pyrolysis. 2020. V. 150. № August. P. 104898. https://doi.org/10.1016/j.jaap.2020.104898
  24. Kendin M., Tsymbarenko D. // Cryst. Growth Des. 2020. V. 20. № 5. P. 3316. https://doi.org/10.1021/acs.cgd.0c00110
  25. Martynova I.A., Tsymbarenko D.M., Kuz’mina N.P. // Russ. J. Coord. Chem. 2014. V. 40. № 8. P. 565. https://doi.org/10.1134/S1070328414080077
  26. Bußkamp H., Deacon G.B., Hilder M. et al. // CrystEngComm. 2007. V. 9. № 5. P. 394. https://doi.org/10.1039/B700980A
  27. Tsymbarenko D., Martynova I., Grebenyuk D. et al. // J. Solid State Chem. 2018. V. 258. № December. 2017. P. 876. https://doi.org/10.1016/j.jssc.2017.12.024
  28. Dieters D., Meyer G. // Z. Anorg. Allg. Chem. 1996. V. 622. № 2. P. 325. https://doi.org/10.1002/zaac.19966220220
  29. Grebenyuk D., Ryzhkov N., Tsymbarenko D. // J. Fluor. Chem. 2017. V. 202. № September. P. 82. https://doi.org/10.1016/j.jfluchem.2017.08.014
  30. Kepert C.J., Wei-Min L., Junk P.C. et al. // Aust. J. Chem. 1999. V. 52. № 6. P. 437. https://doi.org/10.1071/CH98041
  31. Gomez Torres S., Pantenburg I., Meyer G. // Z. Anorg. Allg. Chem. 2006. V. 632. № 12–13. P. 1989. https://doi.org/10.1002/zaac.200600154
  32. Zhang Y., Bhadbhade M., Scales N. et al. // J. Solid State Chem. 2014. V. 219. P. 1. https://doi.org/10.1016/j.jssc.2014.07.007
  33. Rühlig K., Abylaikhan A., Aliabadi A. et al. // Dalton Trans. 2017. V. 46. № 12. P. 3963. https://doi.org/10.1039/C6DT04556A

Дополнительные файлы


© М.П. Кендин, Р.А. Гашигуллин, И.А. Мартынова, А.А. Аносов, Д.М. Цымбаренко, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».