Effect of Fluorine on Thermoluminescence in LiMgPO4

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fluorine-doped lithium magnesium phosphate has been studied for the first time. It has been shown that fluorine significantly enhances the intensity of thermally stimulated luminescence. To find the preferred positions of fluorine and structural distortions caused by aliovalent substitution, ab initio calculations have been performed, which demonstrate that fluorine is not included into the (PO4)3– anion; rather, it promotes the formation of clusters simultaneously containing lithium and fluorine ions.

About the authors

M. O. Kalinkin

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

D. A. Akulov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

O. I. Gyrdasova

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

R. M. Abashev

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

A. I. Surdo

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

N. I. Medvedeva

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

D. G. Kellerman

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: kalinkin@ihim.uran.ru
620990, Yekaterinburg, Russia

References

  1. Abdel Rahman R.O., Hung Y.T. // Water. 2020. V. 12. P. 19. https://doi.org/10.3390/w12010019
  2. Pyshkina M.D., Nikitenko V.O., Zhukovsky M.V., Ekidin A.A. // AIP Conf. Proc. 2019. V. 2174. P. 020158. https://doi.org/10.1063/1.5134309
  3. Noor N.M., Fadzil M.S.A., Ung N. et al. // Radiat. Phys. Chem. 2016. V. 126. P. 56. https://doi.org/10.1016/j.radphyschem.2016.05.001
  4. Rivera T. // Appl. Radiat. Isot. 2012. V. 71. P. 30. https://doi.org/10.1016/j.radphyschem.2016.05.001
  5. Sears D.W., Sears H., Sehlke A., Hughes S.S. // J. Volcanol. Geotherm. Res. 2018. V. 349. P. 74. https://doi.org/10.1016/j.jvolgeores.2017.09.022
  6. Miyahara M.M., Sugi E., Katoh T. et al. // Radiat. Phys. Chem. 2012. V. 81. P. 705. https://doi.org/10.1016/j.jvolgeores.2017.09.022
  7. Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
  8. Sidorov A.I., Kirpichenko D.A., Yurina U.V., Podsvi-rov O.A. // Glass Phys. Chem. 2021. V. 47. P. 118. https://doi.org/10.1134/S1087659621020140
  9. Antonov-Romanovsky V.V. // J. Phys. Radium. 1956. V. 17. P. 694. https://hal.archives-ouvertes.fr/jpa-00234423
  10. Menon S.N., Singh A.K., Kadam S. et al. // J. Food Proc. Preserv. 2019. V. 43. P. 13891. https://doi.org/10.1111/jfpp.13891
  11. Guo J., Tang Q., Zhang C. et al. // J. Rare Earths. 2017. V. 35. P. 525. https://doi.org/10.1016/S1002-0721(17)60943-8
  12. Gieszczyk W., Bilski P., Kłosowski M. et al. // Radiat. Measur. 2018. V. 113. P. 14. https://doi.org/10.1016/j.radmeas.2018.03.007
  13. Palan C.B., Bajaj N.S., Soni A., Omanwar S.K. // Bull. Mater Sci. 2016. V. 39. P. 1157. https://doi.org/10.1007/s12034-016-1261-4
  14. Dhabekar B., Menon S.N., Raja E.A. et al. // Nucl. Instr. Methods Phys. B. 2011. V. 269. P. 1844. https://doi.org/10.1016/j.nimb.2011.05.001
  15. Bajaj N.S., Palan C.B., Koparkar K.A. et al. // J. Lumines. 2016. V. 175. P. 9. https://doi.org/10.1016/j.jlumin.2016.02.003
  16. Chougaonkar M.P., Kumar M., Bhatt B.C. // Int. J. Lum. Appl. 2012. V. 2. P. 194.
  17. Keskin I.Ç., Türemis M., Katı M.I. et al. // J. Lumines. 2020. V. 225. P. 117276. https://doi.org/10.1016/j.jlumin.2020.117276
  18. Kellerman D.G., Kalinkin M.O., Abashev R.M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 27632. https://doi.org/10.1039/d0cp05185c
  19. Kalinkin M.O., Akulov D.A., Medvedeva N.I. et al. // Mater. Today Com. 2022. V. 31. P. 103346. https://doi.org/10.1016/j.mtcomm.2022.103346
  20. Modak P., Modak B. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 16244. https://doi.org/10.1039/D0CP02425B
  21. Kellerman D.G., Medvedeva N.I., Kalinkin M.O. et al. // J. Alloys Compd. 2018. V. 766. P. 626. https://doi.org/10.1016/j.jallcom.2018.06.328
  22. Kalinkin M.O., Abashev R.M., Zabolotskaya E.V. et al. // Mater Res. Express. 2019. V. 6. P. 046206. https://doi.org/10.1088/2053-1591/aafd3e
  23. Peng Y.M., Su Y.-K., Yang R.-Y. // Mater. Res. Bull. 2013. V. 48. P. 1946. https://doi.org/10.1016/j.materresbull.2013.01.039
  24. Su Y.-K., Peng Y.M., Yang R.-Y., Chen J.-L. // Opt. Mater. 2012. V. P. 1598. https://doi.org/10.1016/j.optmat.2012.03.019
  25. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  26. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  27. Perdew J.P., Burke S., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  28. Monkhorst H.J., Pack J.D. // Phys. Rev. B: Solid State. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  29. Ben Yahia H., Shikano M., Takeuch T. et al. // J. Mater. Chem. A. 2014. V. 2. P. 5858. https://doi.org/10.1039/c3ta15264b
  30. Berger T., Hajek M. // Radiat. Measur. 2008. V. 43. P. 146. https://doi.org/10.1016/j.radmeas.2007.10.029
  31. Kumar V., Nagarajan R. // Chem. Phys. Lett. 2012. V. 530. P. 98. https://doi.org/10.1016/j.cplett.2012.02.021
  32. Hanic F., Handlovic M., Burdova K., Majling J. // J. Crystallogr. Spectrosc. Res. 1982. V. 12. P. 99. https://doi.org/10.1007/BF01161009
  33. Zimina G.V., Tsygankova M., Sadykova M. et al. // MRS Advances. 2018. V. 3. P. 1309. https://doi.org/10.1557/adv.2017.622

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (166KB)
3.

Download (979KB)
4.

Download (122KB)
5.

Download (756KB)

Copyright (c) 2023 М.О. Калинкин, Д.А. Акулов, О.И. Гырдасова, Р.М. Абашев, А.И. Сюрдо, Н.И. Медведева, Д.Г. Келлерман

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».