Some electrochemical phenomena accompanying destruction of nanocluster polyoxomolybdate Mo132
- Autores: Ostroushko A.A.1, Gagarin I.D.1, Permyakova A.E.1
-
Afiliações:
- Ural Federal University named after the first President of Russia B. N. Yeltsin
- Edição: Volume 99, Nº 2 (2025)
- Páginas: 297-303
- Seção: ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ, СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР И НАНОМАТЕРИАЛОВ
- ##submission.dateSubmitted##: 19.05.2025
- ##submission.dateAccepted##: 19.05.2025
- ##submission.datePublished##: 20.05.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/292486
- DOI: https://doi.org/10.31857/S0044453725020157
- EDN: https://elibrary.ru/DDDDGD
- ID: 292486
Citar
Resumo
During thermodestruction of keplerate-type nanocluster polyoxometallate (POM) Mo132 in the solid state, there were electric charges in the samples due to the release of amphiphilic ionized molecular particles into the environment. The sample-ground potential difference reached 100 and more volts, and the sign of the charge was determined by the presence or absence of the moderate electromagnetic field. In the course of studying the photodegradation of POM Mo132 in aqueous solutions, an electrochemical phenomenon such as the occurrence of photovoltaic potential difference between the electrodes placed in the solution from the top and bottom is observed. The fluctuations of the potential difference due to the processes of polarization/depolarization of the near-electrode zones caused by different diffusion rates of counterions from the upper and lower parts of the solution are also found.
Sobre autores
A. Ostroushko
Ural Federal University named after the first President of Russia B. N. Yeltsin
Autor responsável pela correspondência
Email: alexander.ostroushko@urfu.ru
Rússia, Ekaterinburg
I. Gagarin
Ural Federal University named after the first President of Russia B. N. Yeltsin
Email: alexander.ostroushko@urfu.ru
Rússia, Ekaterinburg
A. Permyakova
Ural Federal University named after the first President of Russia B. N. Yeltsin
Email: alexander.ostroushko@urfu.ru
Rússia, Ekaterinburg
Bibliografia
- Pope M.T. Heteropoly and Isopoly Oxometalates, Springer Berlin Heidelberg: Berlin, Heidelberg, 1983. 180 p. https://doi.org/10.1007/978-3-662-12004-0
- Kurth D.G., Lehmann P., Volkmer D. et al. // Dalton Trans. 2000. № 21. P. 3989. https://doi.org/10.1039/b003331f
- Zhou Y., Chen G., Long Z., Wang J. // RSC Adv. 2014. V. 79. № 4. Р. 42092. https://doi.org/10.1039/C4RA05175K
- Müller A., Gouzerh P. // Chem. Soc. Rev. 2012. V. 41. № 22. P. 7431. https://doi.org/0.1039/c2cs35169b
- Jalilian F., Yadollahi B., Farsani M. et al. // Catal. Commun. 2015. V. 66. P. 107. https://doi.org/10.1016/j.catcom.2015.03.032
- Besson C., Schmitz S., Capella K.M. et al. // Dalton Trans. 2012. V. 41. P. 9852. https://doi.org/10.1039/c2dt30502j
- Panagiotopoulos A., Douvas A., Argitis P., Coutsolelos A. // ChemSusChem. 2016. № 9. V. 22. P. 3213. https://doi.org/10.1002/cssc.201600995
- Kopilevich S., Gil A., Garcia-Ratés M. et al. // J. Am. Chem. Soc. 2012. V. 134. P. 13082. https://doi.org/10.1021/ja304513t
- Davoodnia A., Nakhaei A. // Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2016. V. 46. № 7. P. 1073. https://doi.org/10.1080/15533174.2015.1004419
- Elistratova J., Akhmadeev B., Gubaidullin A. et al. // New J. Chem. 2017. V. 41. P. 5271. https://doi.org/10.1039/c7nj01237c
- Garazhian Z., Rezaeifard A., Jafarpour M. // RSC Adv. 2019. № 9. V. 60. Р. 34854. https://doi.org/10.1039/C9RA06581D
- Popa A.M., Hu L., Crespy D. et al. // J. of Membrane Science. 2011. V. 373. № 1–2. P. 196. https://doi.org/10.1016/j.memsci.2011.03.015
- Mokhtari R., Rezaeifard A., Jafarpour M., Farrokh A. // Catal. Sci. Technol. 2018. V. 18. № 8. P. 4645. https://doi.org/10.1039/C8CY00603B
- Ostroushko A.A., Vazhenin V.A., Tonkushina M.O. // Russ. J. Inorg. Chem. 2017. V. 62. № 4. P. 483. https://doi.org/10.1134/S0036023617040131 [Остроушко А.А., Важенин В.А., Тонкушина М.О. // Журн. неорган. химии. 2017. Т. 62. № 4. С. 483. https://doi.org/10.7868/S0044457X17040134]
- Ostroushko A.A., Tonkushina M.O., Safronov A.P. et al. // Russ. J. Appl. Chem. 2010. V. 83. № 2. P. 332. https://doi.org/10.1134/S107042721002028X [Остроушко А.А., Тонкушина М.О., Сафронов А.П. и др. // Журн. прикл. хим. 2010. Т. 83. № 2. С. 334.]
- Jalilian F., Yadollahi B., Farsani M. et al. // RSC Adv. 2015. № 5. V. 86. Р. 70424. https://doi.org/10.1039/C5RA12488C
- Mouanni S., Amitouche D., Mazari T., Rabia C. // Appl. Petrochem. Res. 2019. V. 9. № 2. P. 67. https://doi.org/10.1007/s13203-019-0226-0
- Ostroushko A.A., Gagarin I.D., Grzhegorzhevskii K.V. et al. // J. Mol. Liq. 2019. V. 301. Р. 110910. https://doi.org/10.1134/S0036023617040131
- Rezaeifard A., Haddad R., Jafarpour M., Hakimi M. // J. Am. Chem. Soc. 2013. V. 135. № 27. Р. 10036. https://doi.org/10.1021/ja405852s
- Ostroushko A.A., Gagarin I.D., Danilova I.G., Gette I.F. // Nanosystems: Physics, Chemistry, Mathematics. 2019. V. 10. № 3. P. 318. https://doi.org/10.17586/2220-8054-2019-10-3-318-349
- Rezaeifard A., Jafarpour M., Haddad R. et al. // J. Clust. Sci. 2015. V. 26. № 5. P. 1439. https://doi.org/10.1007/s10876-015-0876-82018
- Grzhegorzhevskii K.V., Shevtsov N.S., Abushaeva A.R. et al. // Russ. Chem. Bull. 2020. V. 69. № 4. P. 804. https://doi.org/10.1007/s11172-020-2836-1 [Гржегоржевский К.В., Шевцев Н.С., Абушаева А.Р. и др. // Изв. Академии наук. Сер. Хим. 2020. Т. 69. № 4. C. 804–814. https://doi.org/10.1007/s11172-020-2836-1]
- Shimoda K., Ishikawa S., Tashiro M. et al. // Inorg. Chem. 2020. V. 59. № 8. Р. 5252. https://doi.org/10.1021/acs.inorgchem.9b03713
- Grzhegorzhevskii K.V., Tonkushina M.O., Fokin A.V. et al. // Dalton Trans. 2019. V. 48. P. 6984. https://doi.org/10.1039/c8dt05125a
- Ishikawa S., Zhang Z., Ueda W. // ACS Catal. 2018. V. 8. № 4. Р. 2935. https://doi.org/10.1021/acscatal.7b02244
- Arefian M., Mirzaei M., Eshtiagh-Hosseini H., Frontera A. // Dalton Trans. 2017. V. 46. P. 6812. https://doi.org/10.1039/c7dt00894e
- Farhadi S., Babazadeh Z., Maleki M. // Acta Chim. Slov. 2006. V. 53. P. 72.
- Yamase T., Kurozumi T. // Dalton Trans. 1983. P. 2205. https://doi.org/10.2741/1156
- Boggs B.K., King R.L., Botte G.G. // Chem. Commun. 2009. P. 4859. https://doi.org/10.1039/b905974a
- Umer M., Brandoni C., Tretsiakova S. et al. // Results in Engineering. 2024. V. 23. 102803. https://doi.org/10.1016/j.rineng.2024.102803
- Андреев В.Н., Никитин С.Е., Климов В.А. и др. // Физика твердого тела. 1999. Т. 41. № 7. С. 1323.
- Andreev V.N., Chudnovskii F.A., Nikitin S.E., Kozyrev S.V. // Mol. Mat. 1998. V. 11. P. 139.
- Müller A., Krickemeyer E., Bögge H. et al. // Angew. Chem. Int. Ed. 1998. V. 37. № 24. P. 3359. https://doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3359:: AID-ANIE3359>3.0.CO;2-J
- Müller A., Fedin V.P., Kuhlmann C. et al. // Chem. Commun. 1999. № 10. P. 927.
- Ostroushko A.A., Ulitko M.V., Tonkushina M.O. et al. // Nanotechnologies in Russia. 2018. V. 13. № 1–2. P. 1. https://doi.org/10.1134/S199507801801010X [Остроушко А.А., Улитко М.В., Тонкушина М.О. и др. // Российские нанотехнологии. 2018. Т. 13. Вып. 1–2. С. 3.]
- Ostroushko A.A., Gette I.F., Brilliant S.A., Danilova I.G. // Nanotechnologies in Russia. 2019. V. 14. № 3–4. P. 159. https://doi.org/10.1134/S1995078019020101 [Остроушко А.А., Гетте И.Ф., Бриллиант С.А., Данилова И.Г. // Российские нанотехнологии. 2019. 14. № 3–4. C. 75. https://doi.org/10.21517/1992-7223-2019-3-4-75-80]
- Ostroushko A.A., Tonkushina M.O., Safronov A.P. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 2. P. 172. https://doi.org/10.1134/S003602360902002 [Остроушко А.А., Тонкушина М.О., Сафронов А.П. и др. // Журн. неорган. химии. 2009. Т. 54. № 2. С. 204.]
- Ostroushko A.A., Russkikh O.V., Maksimchuk T.Yu. // Ceram. Int. 2021. V. 47. № 15. P. 21905. https://doi.org/10.1016/j.ceramint.2021.04.208
- Ostroushko A.A., Maksimchuk T.Yu., Permyakova A.E., Russkikh O.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 6. P. 799. https://doi.org/10.1134/S0036023622060171 [Остроушко А.А., Максимчук Т.Ю., Пермякова А.Е., Русских О.В. // Журн. неорган. хим. 2022. Т. 67. № 6. С. 727. https://doi.org/10.31857/S0044457X22060186]
- Niu J., You X., Duan C. // Inorg. Chem. 1996. V. 35. № 14. P. 4211. https://doi.org/10.1021/ic951458i
- Андреев В.Н., Никитин С.Е., Климов В.А. и др. // Физика твердого тела. 1999. Т. 41. № 7. С. 1323.
- Andreev V.N., Chudnovskii F.A., Nikitin S.E., Kozyrev S.V. // Mol. Mat. 1998. V. 11. P. 139–142.
- Андреев В.Н., Никитин С.Е., Климов В.А. и др. // Физика твердого тела. 2001. Т. 43. № 4. C. 755.
- Ostroushko A.A., Sennikov M.Yu., Sycheva N.S. // Russ. J. Inorg. Chem. 2005. V. 50. № 7. P. 1050. [Остроушко А.А., Сенников М.Ю., Сычева Н.С. // Журн. неорган. химии. 2005. Т. 50. № 7. С. 1138.]
- Ostroushko A.A., Sennikov M.Yu. // Russ. J. Phys. Chem. A. 2009. V. 83. № 1. P. 111. [Остроушко А.А., Сенников М.Ю. // Журн. физ. химии. 2009. Т. 83. № 1. С. 127.]
- Ostroushko A.A. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. P. 387. https://doi.org/10.1134/S0036023615030158 [Остроушко А.А. // Журн. неорган. химии. 2015. Т. 60. № 3. С. 440. https://doi.org/10.7868/S0044457X15030150]
- Ostroushko A.A., Grzhegorzhevskii K.V., Medvedeva S.Y. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2021. V. 12. № 1. P. 81. https://doi.org/10.17586/2220-8054-2021-12-1-81-112
- Tereshchenko K.A., Shiyan D.A., Grzhegorzhevskii K.V. et al. // J. Struct. Chem. 2022. V. 63. № 12. P. 2004. [Терещенко К.А., Шиян Д.А., Гржегоржевский К.В. и др. // Журн. структур. химии. 2022. Т. 63. № 12. 103434. https://doi.org/10.26902/JSC_id103434]
- Müller A., Sarkar S., Shah S.Q.N. et al. // Angew. Chem. Int. Ed. Eng. 1999. V. 38. P. 3238.
- Ostroushko A.A., Gagarin I.D., Kudyukov E.V. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2023. V. 14. № 5. P. 571. https://doi.org/10.17586/2220-8054-2023-14-5-571-583
- Ostroushko A.A., Tonkushina M.O. // Russ. J. Phys. Chem. A. 2016. V. 90. № 2. P. 436. https://doi.org/10.1134/S0036024416020229 [Остроушко А.А., Тонкушина М.О. // Журн. физ. химии. 2016. Т. 90. № 2. C. 256. https://doi.org/10.7868/S0044453716020229]
Arquivos suplementares
