Parametric Evaluation of the Energy of Tetrel Bonds in Complexes of Tetrahedral Molecules with Ammonia and Halide Anions

Capa

Citar

Texto integral

Resumo

The electronic properties of weak and strong tetrel bonds (TtBs) formed by the elements of the carbon subgroup Tt = C, Si, Ge, Sn, Pb, which provide their subatomic electrophilic site for noncovalent interactions, have been studied. Generalized quantitative models for evaluating the energy of tetrel bonds were obtained for a large sample of molecular complexes formed by halide anions or ammonia molecule with tetrahedral molecules used as an example. The replacement of the nucleophilic fragment in the complexes leads to different trends for the dependences of the interaction energy on the electronic characteristic of the bond. The minimum of the electrostatic potential on the line of the tetrel bond proved to be the most universal factor suitable for quantitative comparison of both weak and relatively strong bonds within a single parametric model.

Sobre autores

E. Bartashevich

South Ural State University (National Research University)

Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia

S. Mukhitdinova

South Ural State University (National Research University)

Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia

I. Klyuev

South Ural State University (National Research University)

Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia

V. Tsirelson

South Ural State University (National Research University); Mendeleev University of Chemical Technology of Russia

Autor responsável pela correspondência
Email: muhitdinova.s.e@gmail.com
454080, Chelyabinsk, Russia; 125047, Moscow, Russia

Bibliografia

  1. Politzer P., Murray J.S. // Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta). 2002. V. 108. № 3. P. 134.
  2. Bartashevich E.V., Matveychuk Y.V., Mukhitdinova S.E. et al. // Theor. Chem. Acc. 2020. V. 139. № 2. P. 26.
  3. Legon A.C. // Phys. Chem. Chem. Phys. 2017. V. 19. № 23. P. 14884.
  4. Alkorta I., Elguero J., Frontera A. // Crystals. 2020. V. 10. № 3. P. 180.
  5. Grabowski S.J. // Phys. Chem. Chem. Phys. 2014. V. 16. № 5. P. 1824.
  6. Daolio A., Scilabra P., Terraneo G. et al. // Coord. Chem. Rev. 2020. V. 413. P. 213265.
  7. Scilabra P., Kumar V., Ursini M. et al. // J. Mol. Model. 2018. V. 24. № 1. P. 37.
  8. Scheiner S. // J. Phys. Chem. A. 2018. V. 122. № 9. P. 2550.
  9. Hou M., Liu Z., Li Q. // Int. J. Quantum Chem. 2020. V. 120. № 15. P. e26251.
  10. Scheiner S. // Phys. Chem. Chem. Phys. 2021. V. 23. № 10. P. 5702.
  11. Zierkiewicz W., Michalczyk M., Scheiner S. // Molecules. 2018. V. 23. № 6. P. 1416.
  12. Grabowski S. // Molecules. 2018. V. 23. № 5. P. 1183.
  13. Scheiner S. // Ibid. 2018. V. 23. № 5. P. 1147.
  14. Liu M., Li Q., Cheng J. et al. // J. Chem. Phys. 2016. V. 145. № 22. P. 224310.
  15. Frontera A., Bauzá A. // Chem. – A Eur. J. 2018. V. 24. № 62. P. 16582.
  16. Бейдер Р. Атомы в молекулах: Квантовая теория. М.: Мир, 2001. 533 с.
  17. Bader R.F.W. // J. Phys. Chem. A. 1998. V. 102. № 37. P. 7314.
  18. Tsirelson V.G. // The Quantum Theory of Atoms in Molecules. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2007. P. 257.
  19. Pendás A.M., Francisco E., Blanco A.M. et al. // Chem. – A Eur. J. 2007. V. 13. № 33. P. 9362.
  20. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170.
  21. Mata I., Alkorta I., Espinosa E. et al. // Ibid. 2011. V. 507. № 1–3. P. 185.
  22. Espinosa E., Alkorta I., Elguero J. et al. // J. Chem. Phys. 2002. V. 117. № 12. P. 5529.
  23. Vener M.V., Egorova A.N., Churakov A.V. et al. // J. Comput. Chem. 2012. V. 33. № 29. P. 2303.
  24. Bushmarinov I.S., Lyssenko K.A., Antipin M.Y. // Russ. Chem. Rev. 2009. V. 78. № 4. P. 283.
  25. Ananyev I.V., Karnoukhova V.A., Dmitrienko A.O. et al. // J. Phys. Chem. A. 2017. V. 121. № 23. P. 4517.
  26. Bartashevich E.V., Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. № 12. P. 1181.
  27. Kuznetsov M.L. // Molecules. 2019. V. 24. № 15. P. 2733.
  28. Kuznetsov M.L. // Int. J. Quantum Chem. 2019. V. 119. № 8. P. e25869.
  29. Bartashevich E.V., Tsirelson V.G. // Phys. Chem. Chem. Phys. 2013. V. 15. № 7. P. 2530.
  30. Alkorta I., Legon A. // Molecules. 2017. V. 22. № 10. P. 1786.
  31. Granovsky A.A. Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html.
  32. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  33. Jorge F.E., Neto A.C., Camiletti G.G. et al. // Ibid. 2009. V. 130. № 6. P. 064108.
  34. Bartashevich E.V., Mukhitdinova S.E., Klyuev I.V. et al. // Molecules. 2022. V. 27. № 17. P. 5411.
  35. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580.
  36. Colombant D., Manheimer W., Ott E. // Phys. Rev. Lett. 1984. V. 53. № 5. P. 446.
  37. Statistica: 13. TIBCO Software Inc, http://statsoft.ru/#tab-STATISTICA-link
  38. Vener M.V., Shishkina A.V., Rykounov A.A. et al. // J. Phys. Chem. A 2013. V. 117. № 35. P. 8459.
  39. Mata I., Alkorta I., Espinosa E. et al. // Chem. Phys. Lett. V. 508. № 4–6. P. 332.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (314KB)
3.

Baixar (138KB)
4.

Baixar (177KB)
5.

Baixar (154KB)

Declaração de direitos autorais © Е.В. Барташевич, С.Э. Мухитдинова, И.В. Клюев, В.Г. Цирельсон, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).