EFFECT OF LITHIUM-CONTAINING ELECTROLYTE COMPOSITION ON THE ELECTROCHEMICAL CHARACTERISTICS OF LAYERED NICKEL-COBALT-ALUMINUM OXIDE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electrochemical behavior of the multicomponent layered oxide LiNi0.8Mn0.15Co0.05O2 in an electrolyte containing lithium oxalate difluoroborate (LiF2BC2O4) as the background salt was studied for the first time. It was shown that the overall polarization resistance in this electrolyte is significantly lower than in a LiClO4-based electrolyte in the same solvent, leading to an increase in discharge capacity, especially at elevated current loads.

About the authors

A. M. Skundin

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Email: askundin@mail.ru
Moscow, Russia

T. L. Kulova

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Email: tkulova@mail.ru
Moscow, Russia

I. M. Gavrilin

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Moscow, Russia

E. V. Chirkova

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Moscow, Russia

Yu. O. Kudryashova

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Moscow, Russia

References

  1. Zhang S.S. // Electrochem. Commun. 2006. V. 8. P. 1423. https://doi.org/10.1016/j.elecom.2006.06.016
  2. Zhang S.S. // J. Power Sources. 2007. V. 163. P. 713. doi: 10.1016/j.jpowsour.2006.09.040
  3. Chen Z., Liu J., Amine K. // Electrochem. Solid-State Lett. 2007. V. 10. P. A45. doi: 10.1149/1.2409743
  4. Gao H., Zhang Z., Lai Y. et al. // J. Cent. South Univ. Technol. 2008. V. 15. P. 830. doi: 10.1007/s11771-008-0153-1
  5. Li J., Xie K., Y. Lai Y. et al. // J. Power Sources. 2010. V. 195. P. 5344. doi: 10.1016/j.jpowsour.2010.03.038
  6. Fu M.H., Huang K.L., Liu S.Q. et al. // Ibid. 2010. V. 195.P. 862. doi: 10.1016/j.jpowsour.2009.08.042
  7. Shangguan X., Jia G., Li F. et al. // J. Electrochem. Soc. 2016. V. 163. V. A2797. doi: 10.1149/2.1241613jes
  8. Liang Y., Zhang J., Guan S.et al. // J. Materiomics. 2024. V. 10. P. 880. https://doi.org/10.1016/j.jmat.2023.12.003
  9. Zhou H., Xiao K., Li J. // J. Power Sources. 2016. V. 302. P. 274. http://dx.doi.org/10.1016/j.jpowsour.2015.10.073
  10. Zhang Z., Chen X., Li F. et al. // Ibid. 2010. V. 195. P. 7397. doi: 10.1016/j.jpowsour.2010.05.056
  11. Zhou H., Liu F., Li J. // J. Mater. Sci. Technol. 2012. V. 28. P. 723. https://doi.org/10.1016/S1005-0302(12)60121-2
  12. Yu J., Gao N., Peng J. et al. // Front. Chem. 2019. V. 7. Article # 494. doi: 10.3389/fchem.2019.00494
  13. Gao X., Qu Q., Zhu G. et al. // RSC Adv. 2017. V. 7. P. 50135. doi: 10.1039/c7ra10045k
  14. Chakraborty A., Kunnikuruvan S., Kumar S. et al. // Chem. Mater. 2020. V. 32. P. 915. https://dx.doi.org/10.1021/acs.chemmater.9b04066
  15. Yang J., Liang X., Ryu H., et al. // Energy Storage Mater. 2023. V. 63. Article # 102969. https://doi.org/10.1016/j.ensm.2023.102969
  16. Park G., Ryu J., Kim J., et al. // Energy Storage Mater. 2024. V. 70. Article # 103496. https://doi.org/10.1016/j.ensm.2024.103496
  17. Randles J.E.B. // Trans. Faraday Soc. 1948. V. 44. P. 327. https://doi.org/10.1039/TF9484400327
  18. Ševćik A. // Coll. Czech. Chem. Comm. 1948. V. 13. P. 349. https://doi.org/10.1135/cccc19480349
  19. Liu J., Zhang Z., Kamenskii M. et al // Acta Phys.Chim. Sin. 2025. V. 41. Article # 100011. https://doi.org/10.3866/PKU.WHXB202308048

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).